CLIMATE RISK IN THE ELECTRICITY SECTOR:
Legal Obligations to Advance Climate Resilience Planning by Electric Utilities

Romany M. Webb, Michael Panfil and Sarah Ladin

December 2020
Climate Risk in the Electricity Sector: Legal Obligations to Advance Climate Resilience Planning by Electric Utilities

ROMANY M. WEBB, MICHAEL PANFIL AND SARAH LADIN

Abstract:

Electricity generation, transmission and distribution, and load are all impacted by weather patterns. Electric system assets have been designed for historic weather conditions, with the goal of ensuring reliability and quick recovery following extreme events. However, climate change is causing major shifts in historic weather patterns and more frequent and severe extremes, which are creating new risk profiles for the electric system. Proactive climate resilience planning by electric utilities to identify, respond, and rationally allocate these climate risks is thus increasingly salient. This paper argues that it is also legally required.

Recently published industry studies demonstrate that accurate, specific, and actionable climate resilience planning is possible. Nevertheless, and despite the significant benefits of climate resilience planning, relatively few electric utilities have engaged in the process. This paper explores two legal doctrines, public utility law and tort law, which we argue obligate electric utilities to plan for the impacts of climate change on their assets and operations. Public utility law requires electric utilities to meet, among other things, prudent investment and reliability standards. Tort law establishes a duty of care that obligates electric utilities to, among other things, avoid foreseeable harm when performing acts that could injure others. We argue that, as climate science becomes more precise and predictive, these legal standards take on new meaning and require electric utilities to engage in climate resilience planning.
The Sabin Center for Climate Change Law develops legal techniques to fight climate change, trains law students and lawyers in their use, and provides the legal profession and the public with up-to-date resources on key topics in climate law and regulation. It works closely with the scientists at Columbia University’s Earth Institute and with a wide range of governmental, non-governmental and academic organizations.

Environmental Defense Fund (EDF) is a non-partisan, non-governmental environmental organization representing over two million members and supporters nationwide. Since 1967, EDF has linked law, policy, science, and economics to create innovative and cost-effective solutions to today’s most pressing environmental problems.

Disclaimer:
This paper is the responsibility of The Sabin Center for Climate Change Law and EDF, and does not reflect the views of Columbia Law School or Columbia University. This paper is an academic study provided for informational purposes only and does not constitute legal advice. Transmission of the information is not intended to create, and the receipt does not constitute, an attorney-client relationship between sender and receiver. No party should act or rely on any information contained in this White Paper without first seeking the advice of an attorney.

About the Authors:
Romany M. Webb is an Associate Research Scholar at Columbia Law School and Senior Fellow at the Sabin Center for Climate Change Law. Michael Panfil is a Senior Attorney and Director of Federal Energy Policy at EDF. Sarah Ladin is an Attorney at EDF.

Acknowledgements:
The authors would like to thank Hallie Lipsey, 2020 EDF Legal Fellow, Christine Weniger, 2020 Summer Intern at the Sabin Center for Climate Change Law, and Daniel Loud and Chen Zaefen, 2020 Columbia Environmental Law Clinic students, for their help with background research for this paper. We are also grateful to Michael Gerrard, Andrew Sabin Professor of Professional Practice at Columbia Law School and Faculty Director of the Sabin Center for Climate Change Law, Michael Burger, Executive Director of the Sabin Center for Climate Change Law, and Vickie Patton, General Counsel of EDF, for their advice on the drafting of this paper. Several other experts provided helpful comments on an early draft of the paper: Professor Doug Kysar from Yale Law School, Professor Jim Rossi from Vanderbilt University Law School, Professor Eleanor Stein from Albany Law School, Professor James Van Nostrand from West Virginia University College of Law, Justin Gundlach from New York University Institute for Policy Integrity, Thad Culley from Vote Solar, Elena Mihaly and Deanna Moran from the Conservation Law Foundation, Alice Hill from the Council on Foreign Relations, and Elizabeth Stein and Natalie Karas from EDF. We are grateful for their review. Any errors are our own.
Box 1:	Guarding Against Maladaptation in Resilience Planning	4
Box 2:	Projecting Climate Impacts	5
Box 3:	Tools for Evaluating Resilience Measures	7
Box 4:	The Consequences of Failing to Plan for Climate Impacts	9
Box 5:	Why Have So Few Electric Utilities Engaged in Climate Resilience Planning?	10
Box 6:	Key Findings from the Con Ed Climate Study	15
Box 7:	State Utility Commissions’ Authority to Consider Environmental Issues	17
Box 8:	Cost Recovery for Climate Resilience Planning and Investments	23
Box 9:	Wildfires and Climate Resilience Claims	29
Box 10:	Potentially Available Claims and Duties	33
Box 11:	Breach and Specific Conduct	36
Box 12:	Fifty State Survey – Description and Methodology	40
Box 13:	Tariff Language	47

| Graphic 1: | US Map with States Color Coded by Category | 40 |
PART 1:

Introduction

The electric system is significantly affected by weather conditions. High temperatures increase demand for electricity, while simultaneously reducing the operating efficiency of thermoelectric generating facilities and the carrying capacity of transmission and distribution lines. Droughts can force the curtailment or shutdown of hydroelectric and other water-dependent generation, as can storms and flooding, which can also damage or destroy transmission and distribution infrastructure. Seeking to reduce these and other risks, electric system operators have designed their infrastructure in the context of historic weather patterns, with the goal of ensuring reliability and quick recovery following extreme weather events. However, with climate change now causing major shifts in historic weather patterns and more frequent and severe extremes, electric system operators must fundamentally rethink their approach.

The Fourth National Climate Assessment, published in 2018, concluded that “[a]nnual average temperature over the contiguous United States has increased by 1.2ºF (0.7ºC) over the last few decades and by 1.8ºF (1ºC) relative to the beginning of the last century.” This temperature increase has led to more frequent and intense heat waves, droughts, storms, and other extremes, as well as environmental changes such as sea level rise, all of which are negatively affecting the electric system.

The number and severity of weather-related electricity outages have increased in recent years as system operators grapple with multiple compounding climate impacts. One example occurred in Washington state in summer 2015, when higher than average temperatures led to a spike in demand at the same time as a wildfire forced the shutdown of a transmission line, which in turn necessitated the curtailment of output from a hydroelectric generating facility. This led to a twenty-percent shortfall in electricity supply, which cost the local utility—Seattle City Light—approximately $100,000 per day to replace. More recently, what may be the hottest terrestrial temperature ever reliably recorded in California, along with severe wildfires, contributed to a grid operator forced blackout in August 2020.

As these experiences demonstrate, the consequences of climate change already present a significant physical risk to electricity infrastructure, with that risk expected to increase in coming years as climate change worsens. The Chief Executive Officer of investment giant BlackRock, Larry Fink, recently observed that climate risk is “driving a profound reassessment of risk and asset values.” The U.S. Commodity Futures Trading Commission’s report, Managing Climate Risk in the U.S. Financial System, similarly found that “awareness is growing across infrastructure sectors, including energy . . . that physi-

1 See generally Craig Zamuda et al., Energy Supply, Delivery, and Demand, in IMPACTS, RISKS, AND ADAPTATION IN THE UNITED STATES: FOURTH NATIONAL CLIMATE ASSESSMENT, VOLUME II 174, 193 (D.R. Reiddmiler et al. eds., 2018), https://perma.cc/P9QM-YJHF.

2 Id.; see also Michelle T. H. van Vliet et al., Vulnerability of US and European Electricity Supply to Climate Change, 2 NATURE CLIMATE CHANGE 676 (2012), https://perma.cc/K2VZ-DJDJ (finding that, due to climate change-induced drought and heat, the capacity of fossil fuel and nuclear power plants in the U.S. will decline by 4.4 to 19 percent between 2031 and 2060).

3 Katherine Hayhoe et al., Our Changing Climate, in IMPACTS, RISKS, AND ADAPTATION IN THE UNITED STATES: FOURTH NATIONAL CLIMATE ASSESSMENT, VOLUME II 72, 74 (D.R. Reiddmiler et al., eds., 2018), https://perma.cc/KB9P-FBEL.

6 Written Testimony of Dr. Lynn Best, Chief Environmental Officer, Seattle City Light, to Field Hearing of the Senate Committee on Energy and Natural Resources Subcommittee on Energy on the Department of Energy’s Functions and Capabilities to Respond to Emergencies (Aug. 15, 2016), https://perma.cc/6X57-7R9U.

INTRODUCTION

cal risks do not just impact particular sites and locations, but also shorten the lifecycle of infrastructure and degrade its operational reliability.\footnote{10}

A number of electric utilities have acknowledged climate risk in general terms in their corporate filings with the U.S. Securities and Exchange Commission and other documents.\footnote{11} Most electric utilities are, however, yet to integrate climate considerations into system planning, design, operation, and other decisions.\footnote{12} Indeed, only a handful of electric utilities have conducted a comprehensive assessment of where and under what conditions their systems are vulnerable to the impacts of climate change, and fewer still have identified and implemented measures to reduce those vulnerabilities. (Consistent with industry parlance, in this paper, we refer to the process of assessing vulnerabilities and developing remedial measures as “climate resilience planning”).

This paper argues that electric utilities are legally obligated to plan for climate risks to protect already made investments and proactively improve future investment decisions. We identify two separate legal bases for such an obligation, though others almost certainly exist. The first is found in state public utility law, which requires electric utilities to provide customers with continuous, reliable service at just and reasonable rates—something that will not be possible unless electric utilities plan for future climate impacts. The second arises from tort law principles, under which electric utilities may be held liable for negligence if they breach an owed duty of care, which we argue here extends to failure to plan for reasonably foreseeable climate impacts.

This paper explores how public utility law and tort law can be used to drive climate resilience planning by electric utilities. We consider the feasibility of each approach and discuss relevant legal considerations, doctrines, and precedents. This paper should not be read, however, to endorse a particular litigation strategy or offer recommendations as to when, where, or how a particular approach should be pursued. The remainder of the paper is structured as follows: Part 2 defines climate resilience planning and details its use in the electric utility sector. Part 3 explores opportunities to advance climate resilience planning through state utility commission proceedings. It identifies key statutory and common law requirements imposed by public utility law that authorize, and in some cases even compel, state utility commissions to mandate climate resilience planning by electric utilities. Part 4 considers whether and when electric utilities that fail to engage in climate resilience planning can be held liable under tort law in state court. Part 5 considers the interplay between the two primary forums identified in Parts 3 and 4, analyzing legal considerations centered upon choice of forum, including doctrines of primary jurisdiction and exhaustion, and related evidentiary issues. Part 6 concludes.

\footnote{11} E.g., NextEra Energy, Inc. & Florida Power & Light Co., Annual Report (Form 10-K) 25 (Feb. 15, 2019) (indicating that “severe weather and natural disasters . . . can be disruptive and cause power outages and property damage [The company’s] physical plants could be placed at greater risk of damage should changes in the global climate produce unusual variations in temperature and weather patterns, resulting in more intense, frequent and extreme weather events, abnormal levels of precipitation and . . . a change in sea level”); Consolidated Edison Company of New York, Inc., Annual Report (Form 10-K) 36 (Feb. 20, 2020) (noting that “[c]limate change could affect customer demand for the Companies’ energy services. It might also cause physical damage to the Company’s facilities and destruction of their operations due to more frequent and more extreme weather-related events”).
\footnote{12} See infra Part 2.3.
PART 2:

Climate Resilience Planning in the Electric Utility Sector

Electric utilities face differing climate risks, partly because of regional differences in the nature and extent of climate-induced weather and environmental changes, and also partly because of differences in electric utility systems and assets. All electric utilities will, however, be affected by climate change in some way. Across all regions, electric utilities will be faced with higher average and extreme temperatures, changing precipitation patterns, and more intense storms that could force the curtailment or shutdown of generating facilities and lead to widespread transmission and distribution outages.

The U.S. Department of Energy (“DOE”) and various other government bodies and private-sector entities (e.g., Moody’s) have recommended that electric utilities engage in climate resilience planning to identify vulnerabilities within their systems and develop management options. This Part describes the basic steps involved in climate resilience planning and the data required. We also explain how climate resilience planning differs from traditional electric utility planning processes and the benefits it provides. Finally, we survey recent electric utility climate resilience planning efforts and assess their adequacy. Based on that analysis, we conclude that climate risks to electric utility infrastructure can be identified and incorporated into decision-making using well-established, proven planning processes. We observe instances where those processes have been effectively employed by electric utilities, but additionally find that the sector generally has often failed to engage in climate resilience planning despite its feasibility and usefulness. That failure has major implications for electric utility customers, who are more likely to experience climate-induced service disruptions due to the utility’s failure to prepare and will ultimately bear the costs of recovery, which may be significantly higher than the costs of prevention. Climate-induced electricity service disruptions can also have broader social consequences. For example, where electricity outages affect critical facilities, such as hospitals or water treatment plants, public health and safety may be threatened. Similar threats may also arise due to environmental accidents or other problems triggered by outages. One example occurred during Hurricane Harvey in Texas in 2017, when an electricity outage at an industrial facility led to the release of toxic chemicals into the air. More recently, the 2020 blackouts in California, triggered by extreme heat, caused pumps at a wastewater treatment plant to fail, resulting in raw sewage being discharged into nearby waters.
2.1 The Basics of Climate Resilience Planning

In the electric utility sector, climate resilience planning is generally conceived of as a two-stage process, involving the development of (1) climate vulnerability assessments and (2) climate resilience plans. Broadly, climate vulnerability assessments identify where and under what conditions electric utility assets are at risk from the impacts of climate change, how those risks will manifest, and what the consequences will be for system operation. Based on that information, electric utilities can then develop climate resilience plans, outlining measures to reduce the risk to vulnerable assets. Such efforts can take a number of forms, but generally involve both measures to prevent or minimize damage to vulnerable assets (e.g., investments in asset hardening or relocation) and to manage the consequences of such damage when it occurs (e.g., investments in system recoverability). In developing climate resilience plans, electric utilities compare the costs and impacts of different measures and, based on that information and the risk profile of each asset, determine whether, when, and how to invest.

Previous reports published by DOE and others have outlined recommended best practices for climate resilience planning in the electric utility sector. Those reports generally recommend that electric utilities take a long-range, 50-plus year view and plan for the impacts of climate change over the anticipated useful life of existing assets and new assets under development. Electric utilities should not necessarily limit such efforts to hardening infrastructure against flooding or other climate risks. Instead, climate resilience planning should consider the full range of potential climate impacts, including those that may manifest in the long term or that may be less immediately obvious (e.g., the impact of climate change on the demand for energy). By taking a comprehensive approach to climate resilience planning, electric utilities can be better prepared to address the challenges posed by climate change and to ensure the long-term reliability and stability of the electricity grid.

Box 1: Guarding Against Maladaptation in Resilience Planning

Maladaptive measures address the symptom of a particular risk while also exacerbating its underlying cause. As the World Bank has noted, in the climate context, maladaptation involves “actions...that (unintentionally) constrain the options or ability of other decision makers now or in the future to manage the impacts of climate change, thereby resulting in an increase in exposure and/or vulnerability to climate change.” Maladaptation also “describes the extent to which adaptation fails or has been conducted in an unsustainable manner.” Guarding against maladaptation requires climate resilience planning and investment processes to be designed in a manner that acknowledges the critical importance of reducing greenhouse gas emissions to reduce climate risk.

In the context of electric utility climate resilience planning, measures to grid against coming climate consequences should be evaluated and implemented in a manner consistent with emission reduction strategies. Thus, for example, electric utilities should consider investments to support distributed renewable energy resource deployment instead of hardening fossil fuel infrastructure. While this paper focuses on the need to assess climate risk and implement climate resilience planning, electric utilities must also make the transition to clean energy a fundamental priority of their resilience efforts.

21 Id. at iii.
22 Id.
23 Hardening measures include adding barriers to protect equipment vulnerable to flooding, adding or improving cooling systems to protect equipment vulnerable to high heat, and reinforcing assets vulnerable to wind damage. See generally Zamuda et al., supra note 1, at 188-89.
24 While various steps can be taken to lessen the risks posed by climate change, it would be cost prohibitive, and is likely unnecessary to, design a system that is completely immune from climate impacts. See 2016 CPUC REPORT, supra note 15, at 22.
26 2016 DOE PLANNING GUIDE, supra note 15, at 14, 80, 83.
27 Id. at 22-26.
28 JANE EBINGER & WALTER VERGARA, WORLD BANK, CLIMATE IMPACTS ON ENERGY SYSTEMS: KEY ISSUES FOR ENERGY SECTOR ADAPTATION 90 (2011), https://perma.cc/3WVZ-MPJC. Maladaptation could, for example, occur where electric utilities invest in elevating or hardening infrastructure against sea level rise in areas where “relocation” is more appropriate. See generally Beatriz Azevedo de Ameida & Aili Mostafavi, Resilience of Infrastructure Systems to Sea-Level Rise in Coastal Areas: Impacts, Adaptation Measures, and Implementation Challenges, 8 SUSTAINABILITY 1115 (2016), https://perma.cc/3WVZ-MPJC (finding that “[e]levating vulnerable systems is the most effective adaptation measure to reduce the risk of failure of the electric system. Although being the most effective methods, elevation of energy equipment could not be the most cost-effective approach”).
29 Orr Karassin, Mind the Gap: Knowledge and Need in Regulating Adaptation to Climate Change, 22 GEO. INT’L ENV’T L. REV. 383, 389 n.31 (2010).
30 EBINGER & VERGARA, supra note 26, at 38. Notably reducing greenhouse gas emissions continues to be the best approach to preventing future damage.
their review solely to assets they own or operate, particularly where their ability to deliver reliable electricity services depends on facilities owned or operated by third-parties. One critical group of assets that may fall outside electric utilities’ direct control but should nevertheless be considered is generation. In this regard, the California Public Utilities Commission (“CPUC”) has noted that in states with deregulated electricity markets, “utilities no longer own all the generation assets and rely on independent power producers and merchant generators for a significant amount of power. These assets should be considered part of any evaluation of vulnerabilities in the same way the [utilities] assess their own assets.”

Electric utilities should consider the full range of climate impacts expected to occur within their respective service territories during the planning period. This necessarily requires the use of forward-looking projections because, in the age of climate change, historic data is no longer a good predictor of future conditions. Since the impacts of climate change will vary regionally, electric utilities should use localized or downscaled projections, which reflect anticipated conditions in the planning area (see Box 2). Based on those projections electric utilities can evaluate how different climate outcomes may affect their systems and identify key vulnerabilities that may need to be addressed. Electric utilities will often benefit from engaging outside con-

Box 2: Projecting Climate Impacts

The extent of future climate change will depend largely on the amount of future greenhouse gas emissions. Global climate models (GCMs), which mathematically simulate key aspects of the Earth’s climate, are used to project likely outcomes based on different emissions scenarios. While the spatial resolution of GCMs has increased over time, most still use grid cells that extend sixty miles or more on one side, resulting in coarse-resolution projections that are ill suited for use in climate resilience planning. Downscaling techniques can, however, be used to process and refine GCM projections to estimate climate impacts at finer geographic scales that are more useful for climate resilience planning.

The availability of downscaled data has increased significantly in recent years. It can now be found in various publicly available tools and reports developed by government, academic, and other independent bodies. One example is the web-based Cal-Adapt tool which was developed by researchers at the University of California, Berkeley with funding from the California Energy Commission and California Strategic Growth Council. The tool includes projections for key climate variables, such as temperature and precipitation, at 3.5 square mile increments. Other sources include even more granular data, with spatial scales below 2.5 miles, and even as fine as 0.6 miles.

31 Id.
34 The assessment of impacts builds on, but is distinct from, the assessment of future climate conditions. The latter focuses on how key climate variables (e.g., temperature, precipitation, etc.) are likely to change in the future and the associated shifts in environmental conditions (e.g., sea level rise). That involves a different analysis from the assessment of how future climate and environmental conditions will impact electric assets and systems.
36 Id. at 141.
37 CONSOLIDATED EDISON, CLIMATE CHANGE VULNERABILITY STUDY (2019). https://perma.cc/GR37-6UJT. The spatial resolution of GCMs is improving. The latest, experimental models can project key climate parameters (e.g., temperature and precipitation) in 15 to 30 mile increments. Even this may, however, be too coarse for use in climate resilience planning. See Hayhoe et al., supra note 35, at 141.
39 Id.
43 Hayhoe et al., supra note 35, at 144.
PART 2: CLIMATE RESILIENCE PLANNING IN THE ELECTRIC UTILITY SECTOR

sultants or partnering with academic researchers who can assist in developing and/or interpreting down-scaled climate projections and work with the utility’s in-house engineering team to evaluate system impacts.

Given the uncertainty regarding future emission levels and associated climate impacts, it is often recommended that electric utilities adopt a “bounded parameters” approach, comparing asset vulnerabilities and resilience solutions under best- and worst-case scenarios. That approach can, however, be difficult to implement because projected outcomes often differ widely between scenarios. For example, a 2014 DOE study of climate risks to energy infrastructure found that, by the 2070s (i.e., within the useful life of some assets deployed this decade), New York City could experience anywhere from one to four feet of sea level rise. Planning for such a wide range of possible outcomes presents significant challenges for electric utilities, including because relatively low probability outcomes could have catastrophic impacts. Consider, for instance, how existing assets would be affected under the different sea level rise scenarios in the DOE study. With one foot of sea level rise, only one large existing electric system asset would be inundated, whereas nine would be inundated at the high end. Should electric utilities invest in measures to protect all nine potentially affected assets or only a subset? Should electric utilities design new assets to withstand a full four feet of sea level rise or only a smaller amount? Should electric utilities delay making these decisions until greater certainty exists?

Electric utilities’ answers to these and similar questions will necessarily depend on their own risk tolerances—i.e., the level of risk they are willing to accept—and those of their customers, regulators, and other stakeholders. Where risk tolerances differ, conflicts could arise. It is important to recognize that, while the appropriate risk tolerance may be debated, all electric systems present some risk as service disruptions and outages can never be completely eliminated.

One tool that may aid electric utilities and other stakeholders in evaluating risk is probabilistic modeling. Broadly, probabilistic climate projections incorporate probability distributions for each climate parameter, and thus provide an indication of the likelihood of different climate outcomes. As such, probabilistic projections enable electric utilities to make a more informed assessment of where and how individual assets will be impacted, and the most appropriate resilience investments. Recognizing these benefits, DOE has supported research to develop downscaled, probabilistic climate projections. Such projections are now publicly available for key climate parameters (e.g., temperature and precipitation) in many areas, but custom modeling may be required in some cases. Recent advances in modeling techniques have made it easier for electric utilities and others to obtain customized projections, incorporating detail at spatial and temporal scales that align with those used in the planning process.

After securing the necessary data, electric utilities can evaluate the risk to their assets by comparing anticipated future climate and environmental conditions to existing asset characteristics (e.g., location) and design and operating parameters. Electric utilities should assign a risk profile to each asset, based on the likelihood and consequences of it being impacted, and use that to prioritize vulnerabilities and resilience measures.

44 See, e.g., 2016 DOE PLANNING GUIDE, supra note 15, at 19.
46 Many electric system assets have useful lives of 50 years or more. See Zamuda et al., supra note 1, at 192.
48 The DOE study defined large assets to mean power plants of 100 megawatt capacity or greater and substations of 230 kilovolts or greater. See id. at 16.
49 Id. at 17-18.
51 2016 DOE PLANNING GUIDE, supra note 15, at 19; see also A. Barrie Pittock et al., Probabilities Will Help Us Plan for Climate Change, 413 NATURE 249 (2001), https://perma.cc/8TBG-PCQ7 (arguing that “probability estimates are needed” for effective planning and that, without them, “planners will be left needing to . . . hedge their bets, delay their decisions, or else gamble on whether humanity will go down high or low emissions development pathways as they adapt design standards and zoning to climate change”).
52 2016 DOE PLANNING GUIDE, supra note 15, at 19.
53 Id. DOE has partnered with the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration to make available climate data specifically tailored for use in electric resilience planning. See generally U.S. Climate Resilience Toolkit, Energy Data Gallery, https://toolkit.climate.gov/topics/energy/energy-data-gallery (last updated Sept. 24, 2019).
56 See id. at 31-35.
57 Id. at 54-59.
A range of measures, with varying risk mitigation potential, may be available for each vulnerability. In developing their resilience plans, electric utilities must compare the available resilience measures to determine whether and when to invest. In other contexts, electric utilities typically base their investment decisions on cost-benefit analysis (“CBA”), but this can be difficult to apply to resilience projects, including because key benefits are unknown or difficult to quantify. Additional evaluation tools may, therefore, be needed (see Box 3).

It is often recommended that, after evaluating possible resilience measures, electric utilities develop “flexible resilience pathways” to guide their implementation. The flexible pathways approach is intended to assist electric utilities to manage the uncertainties inherent in climate change. Under this approach, electric utilities are encouraged to implement no- and low-regrets resilience measures immediately, and establish thresholds or “trigger points” for the taking of other actions. The thresholds are based on pre-determined risk levels that, if left

Box 3: Tools for Evaluating Resilience Measures

CBA is widely used, both within and outside the electric utility sector, to assess the financial viability of projects that have large upfront costs but deliver benefits over many years. The process is conceptually simple—a project’s benefits and costs are expressed in monetary terms, discounted to present value, and then compared. Few issues arise when costs and benefits are known and easily quantifiable. However, that is often not the case for climate resilience measures, the benefits of which will depend (at least in part) on future climate outcomes, which are uncertain. Any assumptions made will invariably affect the results of the CBA. Thus, when using CBA, electric utilities should conduct sensitivity analysis to assess how changing the assumptions would affect the results.

CBA also inevitably involves difficult decisions about which costs and benefits should be counted. In the electric utility sector, the primary focus is typically on costs and benefits that accrue to the electric utility company and its customers, with little or no attention paid to broader societal impacts. This can create difficulties when applying CBA to investments in climate resilience because, while the costs of such measures are imposed on electric utility companies and their customers today, the benefits are often more widely dispersed (both geographically and temporally).

Given the above, electric utilities and the state utility commissions that regulate them should look at using other tools to evaluate resilience measures. One option is breakeven analysis, which begins by estimating the value to customers of avoiding electricity outages, and then calculates how many outages would need to be mitigated by a resilience measure in order for customers to realize sufficient value to justify investing in that measure. This can then be compared to the probability of future climate-related outages to assess the expected benefits of investment.

Resilience measures can also be evaluated under the so-called “robust decision making” or “RDM” framework. Under this approach, measures are assessed under a wide range of possible, future outcomes to determine which will perform best in a range of circumstances.

58 For a discussion of potential resilience measures, see id. at 61-64.
59 Id. at 77.
60 Id. at 77-80; see also Craig Zamuda et al., Monetization Methods for Evaluating Investments in Electricity System Resilience to Extreme Weather and Climate Change, 32 ELEC. J. 106641 (2019), https://perma.cc/V2QR-YUJ7.
62 Id. No regrets measures are ones that can be taken now, despite uncertainty about future climate change, and will deliver benefits regardless of future conditions.
63 Sensitive analysis shows the relative importance of different inputs into the CBA and thus can be used to determine how varying each input would alter the result. See 2016 DOE PLANNING GUIDE, supra note 15, at 80.
64 See Zamuda et al., supra note 60, at 106641.
65 Id. at 106641, 106645.
66 Id. at 106642-44.
67 This is often referred to as the value of lost load (“VOLL”). Previous studies have estimated the VOLL for different classes of electric utility customers. See, e.g., MICHAEL J. SULLIVAN, UPDATED VALUE OF SERVICE RELIABILITY ESTIMATES FOR ELECTRIC UTILITY CUSTOMERS IN THE UNITED STATES (2009), https://perma.cc/9HWV-JV4V; MICHAEL J. SULLIVAN, ESTIMATED VALUE OF SERVICE RELIABILITY FOR ELECTRIC UTILITY CUSTOMERS IN THE UNITED STATES (2015), https://perma.cc/77MD-CS65.
Climate resilience planning is also important to supplement the disaster or emergency response planning currently undertaken by electric utilities. Broadly, disaster or emergency response planning focuses on electric utilities’ preparedness for one-off weather-related or other events (e.g., cyber-attacks), which could lead to service interruptions or safety issues.78 Such planning is typically based on historic data, reflecting the incidence and severity of past events, and focuses on short-term measures to prepare and respond.79 While that is certainly important, it is not sufficient to address the risks posed by climate change, which requires a broader future-focused approach.80

Integrating climate considerations into current planning and investment decisions should benefit both electric utilities and their customers. Identifying and reducing climate-related threats to existing assets may require material investments in hardening and relocation—projects that typically have long-lead times and must therefore be planned now to avoid future reliability issues.81 Advance planning can also improve investment decision-making, ensuring that electric utilities act prudently and that their capital expenditures benefit ratepayers. Electric utilities must also plan for the impacts of climate change on new assets, many of which will remain in operation for several decades, during which time climate impacts will become increasingly severe.82 Considering those impacts now enables electric utilities to build-in resilience, thereby lessening the need for costly retrofits in the future, as well as the potential for future outages.83 Thus, while climate resilience planning may require up-front investments, it should result in lifetime savings for electric utilities and their customers, including in the form of avoided storm damage and recovery costs.

70 \textit{Id.}
72 \textit{Id.}
73 As discussed in Part 2.1, \textit{supra}, it is recommended that climate resilience planning take a longer-term view, and consider climate impacts over the expected useful life of electric system assets, which can be fifty years or more.
74 See Part 2.1, \textit{supra}.
75 \textit{BROCKWAY \\& DUNN, supra note 14, at 21.}
76 There are some exceptions. For example, the California Energy Commission publishes load forecasts which are developed based on historic weather data, but then adjusted to account for anticipated future temperature increases. Other climate impacts are not, however, accounted for. See \textit{id}.
77 Again, there are some exceptions. For example, Tennessee Valley Authority has previously considered resilience measures in its IRPs. See \textit{ALLEN ET AL., supra note 29, at ix.}
78 \textit{See generally AM. PUB. POWER ASS’N, ALL-HAZARDS GUIDEBOOK (2018), https://perma.cc/5RMX-ZTGZ.}
79 \textit{id. at 15-17.}
80 The same is also likely true of cyber-attacks. Technological and other advances mean that past experience with cyber-attacks may not be a good predictor of future events.
81 \textit{Webb, supra note 50.}
82 \textit{SCL CLIMATE VULNERABILITY ASSESSMENT, supra note 5, at 1 (recognizing that “[d]ecisions are being made today that will shape the resources and infrastructure of the utility for decades into the future when the impacts of climate change will intensify”).}
83 \textit{id. (concluding that “[i]t will be easier and more cost-effective to consider the impacts of climate change in the planning and design of new infrastructure and power resources now than it will be to retrofit infrastructure or replace resources once the impacts of climate change intensify”).}
Failing to plan for the impacts of climate change could also increase electric utilities’ costs in other ways. For example, electric utilities that fail to design new infrastructure with climate impacts in mind may face higher borrowing and insurance costs as concern grows within the financial community about the impacts of climate change on electric utility infrastructure and business models.

2.3 Extent of Climate Resilience Planning in the Electric Utility Sector

Despite the benefits of climate resilience planning, relatively few electric utilities have engaged in the process, with many citing the uncertainties inherent in climate change and the challenges associated with studying it as reasons not to act (see Box 5). Where climate resilience planning has occurred, electric utilities have often been forced into action by particularly severe extreme weather events, which have highlighted vulnerabilities within their systems. For example, after Hurricanes Katrina and Rita caused widespread damage to its transmission and distribution systems in 2005, Entergy Corporation instituted a program to study climate risks and develop resilience measures. Consolidated Edison Company of New York, Inc. (“Con Ed”) did the same following Superstorm Sandy in 2013. As discussed further below, Con Ed’s “Climate Change Vulnerability Study” (“Con Ed Climate Study”) was particularly comprehensive, using custom downscaled projections to analyze five climate variables over seven time periods from 2020 through 2080. In accordance with recommended best practice, Con Ed took a probabilistic approach, under which it analyzed the likelihood and consequences of a range of plausible climate outcomes. This enabled Con Ed to identify key vulnerabilities within its system and design flexible resilience pathways to manage those vulnerabilities.

Box 4: The Consequences of Failing to Plan for Climate Impacts

Recent electricity outages in California provide a preview of what might become the “new normal” if climate considerations are not integrated into electric system planning. On August 14 and 15, 2020, the California Independent System Operator (“CAISO”)—the entity that manages much of California’s electric grid—ordered electric utilities in the state to initiate temporary rolling service cuts, due to a shortage of electricity supplies. As a result, over 800,000 customers lost electricity, some for up to two hours. A preliminary analysis of the incident, conducted by the CAISO, the CPUC, and the California Energy Commission, concluded that a “[c]limate change-induced extreme heat storm across the western United States resulted in demand for electricity exceeding the existing electricity resource planning targets.” The analysis further found that existing resource planning processes do not adequately account for extreme heat and other climate-induced changes. For example, the electricity demand forecasts used to develop resource adequacy requirements are based on average historic peak demand, reflecting one-in-two-year conditions. A fifteen percent “planning resource margin” is added to that amount to, among other things, account for demand spikes. However, even that was not sufficient to account for the impact of the August 2020 heatwaves, which reflected what was considered to be a one-in-thirty-five-year event. As climate change accelerates, such events will occur more frequently, and thus must be factored into planning processes so as to minimize the risk of supply shortages and associated outages.
PART 2: CLIMATE RESILIENCE PLANNING IN THE ELECTRIC UTILITY SECTOR

Box 5: Why Have So Few Electric Utilities Engaged in Climate Resilience Planning?

Various explanations have been offered for electric utilities’ reluctance to engage in climate resilience planning. The Fourth National Climate Assessment identified “[t]he inability to predict future climate parameters with complete accuracy” as a key factor discouraging climate resilience planning.95 While electric utilities regularly deal with uncertainty in other contexts (e.g., when planning for projected changes in electricity load), climate change is often perceived as involving greater unknowns. Many electric utilities appear to view climate resilience planning as akin to an exercise in conjecture. For example, in May 2016, NextEra Energy—the parent company of Florida Power and Light—opposed a shareholder proposal to require the electric utility to report annually on its vulnerability to sea level rise by saying: “a proposal that asks the company to speculate on a single aspect of global climate change nearly a century into the future would be a waste of time and money.”96

Other electric utilities have cited limited data availability as a hindrance to climate resilience planning. For example, some utilities participating in DOE’s Resilience Partnership complained of a “disconnect between the granularity of the outputs of climate modeling and the types of temperature [and other] projections utility planners need.”97 Recent improvements in climate modeling and downscaling techniques have helped to mitigate this problem (see Box 2). Still, however, electric utilities often have to engage consultants or other researchers to develop localized climate data that meets their needs which can be costly.98 Even larger costs are associated with measures to harden or otherwise enhance the resilience of electric utility assets.

This raises another set of questions for electric utilities considering engaging in climate resilience planning—will they be permitted to recover the potentially significant costs incurred in the planning process? And, even more important, will they be permitted to recover the much larger costs associated with implementing resilience measures that planning demonstrates are advisable? Due to electric utilities’ status as monopoly service providers, and the essential nature of the service they provide, their rates are strictly regulated by state utility commissions.99 While regulation varies between states, the basic goal of all commissions is to ensure “just and reasonable” rates, which enable electric utilities to recover no more than their prudently incurred costs, plus a reasonable return on prudent investments.100 Many state utility commissions are yet to rule on whether, and if so when, electric utilities will be permitted to recover the costs associated with climate resilience planning and investment. The resulting uncertainty may have discouraged some electric utilities from engaging in the planning process.101 Seemingly confirming this, the Con Ed Climate Study was delayed for several years, in part due to uncertainty regarding whether the New York Public Service Commission (“NYPSC”) would allow Con Ed to recover the associated costs. This may be even more of a concern for electric utilities operating in states where the utility commission has not historically acted on climate-related issues or there is political resistance to addressing or even discussing the issue.

The Con Ed Climate Study is widely regarded as the gold standard for climate resilience planning in the electric utility sector.102 The studies conducted by other electric utilities have generally been more limited: often focusing solely or primarily on event-based climate impacts (e.g., storms or wildfires) and ignoring more gradual changes (e.g., temperature and sea level rise); considering climate impacts on only a subset of their

95 Zamuda et al., supra note 1, at 192.
97 2016 DOE PARTNERSHIP REPORT, supra note 32, at 2; see also id. at 27 (noting that utilities participating in the Resilience Partnership “identified multiple data that are necessary for effective resilience planning but currently unavailable,” such as “downscaled climate model data for projected changed in future climate,” and that “[i]n general, Partners found the spatial and temporal resolution of current climate models lacking”); see generally CRAIG ZAMUDA ET AL., ELECTRIC SECTOR RESILIENCE STRATEGIES: CURRENT PRACTICES AND LESSONS LEARNED FOR EXTREME WEATHER 6, 24 (2019) (on file with authors).
98 Id. at 25.
100 Id. at 38.
101 See generally Heather N. Jarvis, Keeping the Lights on at All Costs? Imploing Consistent Prudence Review and a Prudence Standard that Includes Demand Response and Responsible Portfolio Management, 29 VT. L. REV. 1037, 1040–41 (2005), https://perma.cc/L6MU-U5FJ (concluding that electric utilities are often reluctant to “take risks for fear of not being able to recapture expenditures” and citing, as an example, utilities’ avoiding investment in new generation assets because of “regulatory uncertainty” arising from a “perceived . . . breakdown in the regulatory compact under which utilities had come to believe they were entitled to recover full all of their utility investments” (internal citations omitted)).
assets, rather than the system as a whole; or assessing asset vulnerabilities based only on historic weather data or very limited climate projections (e.g., a single “worst case” outcome).

These and other flaws were identified in several of the climate vulnerability assessments prepared by electric utilities as part of DOE’s Partnership for Energy Sector Climate Resilience (“Resilience Partnership”). Established in April 2015 in response to industry requests for additional guidance on climate resilience planning, the Resilience Partnership was intended to provide a forum for electric utilities to exchange information and compare best practices.103 As part of the Resilience Partnership, seventeen electric utilities, serving approximately twenty-five percent of electricity customers in the U.S., conducted climate vulnerability assessments.104 Most also developed resilience plans.105

DOE provided participating electric utilities with general guidance on planning, but “encouraged each [utility] to determine the approach, level of detail, and specificity that was appropriate for their organization.”106 As a result, the quality of electric utilities’ planning processes varied considerably, with some having major shortcomings.107 For example:

• Three of the participating electric utilities based their climate vulnerability assessments solely on historic weather data and did not use forward-looking climate projections.108 As DOE recognized, “relying solely on historical data puts a utility at risk of underestimating its vulnerability to future climate change impacts.”109

• Rather than consider the full range of climate impacts expected to occur within their respective service territories, most participating electric utilities focused on one or a subset of impacts.110 Notably, nine utilities did not consider changes in average and/or extreme temperatures that are projected to occur in all regions, and at least four coastal utilities did not consider sea level rise.111 Some vulnerabilities were, therefore, almost certainly overlooked in the utilities’ assessments.

• Less than half of participating electric utilities assessed climate vulnerabilities across all of their “assets and operations.”112 Several utilities considered only a sub-set of assets, with many focusing on a single asset type (e.g., substations).113 Again, this likely resulted in the utilities overlooking some vulnerabilities.

• While some participating electric utilities conducted quantitative exposure assessments to identify specific assets at risk from the studied climate impact(s), several undertook only a qualitative assessment, looking generally at possible risks to the types of assets they own, but not conducting an asset-by-asset review.114 This qualitative approach is unlikely to provide sufficient detail to enable the development of resilience plans.115

A small number of state utility commissions have recently taken steps to promote more robust climate resilience planning by electric utilities. Examples are provided below.116
2.3.1 California

In April 2015, then California Governor Jerry Brown signed an executive order requiring, among other things, an assessment of climate change vulnerabilities by economic sector.117 In response, in July 2015, the CPUC and California Energy Commission established a working group to assist electric utilities to conduct climate vulnerability assessments and develop resilience plans.118 While California’s three largest electric utilities—Pacific Gas and Electric Company (“PG&E”), San Diego Gas and Electric Company (“SDG&E”), and Southern California Edison (“SCE”)—had already committed to doing so through DOE’s Resilience Partnership, the CPUC and California Energy Commission working group encouraged them and other utilities to go beyond the requirements of that program.119

In a January 2016 report, the CPUC indicated that electric utilities “should create an iterative process” for climate resilience planning, such that updated information is available “at least in advance of every general rate case to inform the investment process.”120 PG&E, SDG&E, and SCE have since integrated climate change considerations into the Risk Assessment Mitigation Phase (“RAMP”) process they are required to complete prior to each rate case.121 While that is an important first step, the analysis in the utilities’ RAMP reports is far from comprehensive.

The RAMP process was not designed specifically for climate resilience planning, but rather as a more general tool, which electric and gas utilities can use to assess a wide range of safety-related risks to their operations. In their first RAMP reports, PG&E, SDG&E, and SCE all identified climate change as one of several key sources of safety-related risk.122 The three utilities’ reports discussed, in general terms, how various climate impacts could affect their operations. PG&E’s report examined six climate impacts in two different time periods—i.e., 2022 and 2050—using two model scenarios for each.123 This approach enabled PG&E to identify a range of plausible future climate outcomes in both the near- and long-term.124 Based on those outcomes PG&E estimated safety risks to its workforce and the general public from climate change in terms of additional injuries and deaths.125 PG&E concluded that, in 2022, it could “experience safety consequences for PG&E workforce and the public of an additional 25–129 injuries and 1–3 fatalities per year due to climate change impacts, and in 2050, an additional 66–173 injuries and 2–5 fatalities.”126 Both the 2022 and 2050 figures are significantly lower than the actual number of deaths caused by recent wildfires sparked by PG&E equipment and worsened by climate change. For example, in 2020, PG&E pleaded guilty to eighty-four counts of involuntary manslaughter in connection with deaths arising from the 2018 Camp Fire which ignited when a PG&E owned and operated transmission line came into contact with dry vegetation.127

The RAMP reports prepared by SDG&E and SCE were more limited than that of PG&E, focusing on a smaller number of near-term, event-based climate impacts.128 All three utilities concluded that further analysis is required to determine the full extent of their climate vulnerabilities, and develop resilience solutions. None of the utilities had published such analysis at the time of writing.

119 For example, the CPUC encouraged electric utilities to expand their vulnerability assessments to include a broader range of assets, among other things. See 2016 CPUC REPORT, supra note 15, at 16-14.
120 Id. at 21.
121 Established in December 2014 in response to the enactment of state legislation declaring “safety” to be “the top priority” of the CPUC, the RAMP process is intended to provide greater transparency on how electric and gas utilities assess and mitigate safety-related risks. To that end, prior to their three-yearly rate case, each utility must file with the CPUC a RAMP report that identifies the key risks it faces and options for mitigating those risks. See Cal. Pub. Utils. Comm’n, Decision 14-12-025: Incorporating a Risk-Based Decision-Making Framework into the Rate Case Plan and Modifying Appendix A of Decision 07-07-004 (Dec. 9, 2014), https://perma.cc/3JQ5-4FB3.
123 PG&E analyzed risks associated with major storm events, sea level rise, subsidence, heat waves, wildfires, and drought in 2022 and 2050. See CPUC Review of PG&E RAMP, supra note 122, at 144.
124 Id.
125 Id. at 145.
126 Id.
127 Ivan Penn & Peter Eavis, PG&E Pleads Guilty to 84 Counts of Manslaughter in Camp Fire Case, N.Y. TIMES (June 16, 2020), https://perma.cc/M9U4-8YY8.
128 SDG&E focused on increased temperatures and heat waves, increased wildfires, precipitation changes, and sea level rise and analyzed risks associated with a potential “worst case scenario” involving “[e]xtreme winds in SDG&E’s Fire Threat Zone during a time of drought and elevated temperatures [that] cause a wire down event leading to a wildfire.” See SDG&E RAMP, supra note 122, at 14-4 to 14-6. SCE examined risks associated with “99th percentile extreme heat events, extreme rain events, and extreme wildfires in the near term (2018-2023).” See SCE RAMP, supra note 122, at 12-2.
Seeking to advance climate resilience planning, in May 2018, the CPUC instituted proceedings to develop guidance for electric, gas, and other utilities “on how to incorporate [climate] adaptation into their planning and operations” (among other things).130 In August 2020, the CPUC issued a decision requiring investor-owned energy utilities to submit climate vulnerability assessments every four years as part of their rate case filings.131 The assessments must identify risks to the utilities’ assets, operations, and services from changing temperatures, sea level rise, variations in precipitation, wildfire, and “cascading impacts / compounding incidents” over the next fifty years and options for dealing with those risks.132 Each utility will be required to file its assessment with the CPUC prior to its general rate case. SCE will submit its first assessment in 2022, followed by PG&E in 2024, and SDG&E in 2025.133

PART 2: CLIMATE RESILIENCE PLANNING IN THE ELECTRIC UTILITY SECTOR

2.3.2 New York

In June 2013, as part of rate case proceedings for Con Ed, the New York Public Service Commission (“NYPSC”) convened a “Resiliency Collaborative” to explore issues related to storm hardening and climate resilience.134 Those issues received special attention in the rate case, largely because of New York’s experience with Superstorm Sandy, which occurred less than three months before Con Ed filed its rate case. In its filing, Con Ed had requested approximately $1 billion for “storm hardening structural improvements . . . that are intended to reduce the size and scope of service outages from major storms, as well as to improve responsiveness and expedite the recovery process.”135 Con Ed’s focus solely on storm hardening prompted criticism from several environmental and other groups, who pushed for a broader approach that would account for the full range of climate impacts.136

The Resiliency Collaborative provided a forum for NYPSC staff, Con Ed, federal, state, and local government agencies, and a range of non-governmental organizations to work together on climate issues.137 The participating groups reached a settlement requiring, among other things, Con Ed to complete a climate vulnerability assessment in 2014.138 While Con Ed missed that deadline,139 the completed assessment was published in the Con Ed Climate Study in December 2019, and is the most robust climate resilience planning effort undertaken by any electric utility to date.140

The Con Ed Climate Study analyzed projected change in temperature, humidity, precipitation, sea level, and extreme weather in Con Ed’s service territory over seven time periods spanning from 2020 through 2080.141 Con Ed engaged scientists at Columbia University’s Lamont-Doherty Earth Observatory and consultants at ICF International, Inc., to develop downscaled climate projections for three sub-areas within its territory based thirty-two GCMs.142 To account for uncertainty, the study team used multiple projections assuming different future greenhouse gas concentrations, as well as “extreme event narratives” representing plausible worst-

131 Id. at 4.
137 NYPSC Rate Order, supra note 135, at 71.
139 CONSOLIDATED EDISON, supra note 37.
140 id. at 18-19.
141 id. at 17.
PART 2: CLIMATE RESILIENCE PLANNING IN THE ELECTRIC UTILITY SECTOR

The study team compared anticipated climate conditions against existing asset design and operating parameters to identify vulnerabilities within Con Ed’s system and evaluated measures to address those vulnerabilities (see Box 6). Based on that work, and an assessment of broader electricity market trends, Con Ed will develop a Climate Change Implementation Plan identifying priority actions to be taken over the next five, ten, and twenty years to improve the resilience of its system to climate impacts. That plan is expected to be published by the end of 2020.

In approving the settlement that led to the Con Ed Climate Study, the NYPSC encouraged other electric utilities in New York to also engage in climate resilience planning, stating:

The State’s utilities should familiarize themselves with scientists’ projections for local climate change impacts on each service territory. . . . We expect the utilities to consult the most current data to evaluate the climate impacts anticipated in their regions over the next years and decades, and to integrate these considerations into their system planning and construction forecasts and budgets.

Following the decision in Con Ed’s rate case, the Sabin Center for Climate Change Law intervened in rate case proceedings involving two other New York-based utilities—Central Hudson Gas & Electric Corporation and Orange and Rockland Utilities, Inc. In both proceedings, a settlement was reached, under which each utility agreed to review the Con Ed Climate Study upon its completion and evaluate whether the results of the study and/or other information “suggest a need for an adjustment associated with [the utility’s] capital expenditure planning or investment or operational procedures and whether further study may be required.” However, because the Con Ed Climate Study was not completed during the term of the settlement agreements, neither utility conducted the agreed upon review. To the authors’ knowledge, at the time of writing, no other New York-based electric utility had completed a climate risk assessment similar to that done by Con Ed.

Seeking to promote greater transparency of the climate risks facing electric utilities, in October 2020, the NYPSC initiated a new proceeding to address “matters related to the financial reporting of climate issues.” It appears that the proceeding will focus on whether and how electric utilities should be required to make climate-related risk disclosures in their annual financial statements. The order initiating the proceeding noted that the parent companies of several New York-based electric utilities already disclose climate risks in their financial statements, but that the disclosures reflect “data aggregated at the holding-company level and [are] not utility specific.” The order indicated that the NYPSC “believes” climate-related risk disclosures should be made at the utility level and solicited comments on the form of such disclosures. Depending on the outcome of the proceedings, it could result in electric utilities being forced to engage in climate resilience planning (i.e., to identify climate-related risks that must be disclosed).

142 Id. at 17-19.
143 Id. at 32-37, 38-49.
144 Id. at 10.
145 Id. at 1.
146 NY PSC Rate Order, supra note 135, at 71-72.
149 Id. at 3.
150 Id. at 8.
Box 6: Key Findings from the Con Ed Climate Study

The Con Ed Climate Study revealed highly relevant, specific, and actionable information regarding the impacts of climate change on electric utility assets and operations. Downscaled climate projections developed for the study detail a number of significant changes in weather conditions in Con Ed’s service territory, including a fourteen-fold increase in the number of days with temperatures above 86°F (30°C), a twenty-percent decrease in cold weather days, and a twenty-five-time increase in heat wave events by 2050.151 Precipitation in Con Ed’s service territory is likewise expected to increase, with 500-year floods occurring every ten years by 2100, and the flood height associated with a 100-year flood increasing by up to fifty percent.152 The study identified a number of ways in which these and other climate impacts could put Con Ed’s infrastructure at risk. For example, increased temperatures were shown to result in transmission line sag, which presents a safety risk.153 Other infrastructure—particularly substations—was found to be at risk from climate change-amplified storm surge and flooding.154 Predicted peak load was also revised to reflect increased demand and reduced operational efficiency on hotter days.155

151 CONSOLIDATED EDISON, supra note 37, at 11, 17.
152 Id. at 22-24.
153 Id. at 41.
154 Id. at 40.
155 Id. at 42.
PART 3:
Advancing Climate Resilience Planning Through Electric Utility Regulatory Proceedings

As discussed in Part 2.3, state utility commissions have played an important role in advancing climate resilience planning in the electric utility sector, at least in some areas. Recent proceedings before the CPUC and NYPSC, in particular, serve as case studies for how broad principles of utility regulation can be used to further climate resilience planning. In this Part, we discuss two possible avenues for engagement on climate resilience planning before state utility commissions, namely:

1. intervening in rate case proceedings for a specific electric utility to challenge its past or proposed future expenditures on the basis that it has not adequately considered climate risks and/or to obtain commission approval for the recovery of costs associated with climate resilience planning and investment; and

2. petitioning a state utility commission for a regulation or administrative order mandating climate resilience planning by all electric utilities under its jurisdiction.

For each avenue, we identify specific legal theories that require climate resilience planning, focusing in particular on electric utilities’ core obligation to ensure reliable services at just and reasonable rates.

3.1 Advocating for Climate Resilience Planning Through Rate Case Proceedings

Climate resilience planning may be advocated in rate case proceedings, wherein the state utility commission reviews and approves or rejects an electric utility’s rates and other terms of service. Rate regulation is a core responsibility of all state utility commissions, which are charged with ensuring that electric utilities do not misuse their monopoly power in a way that harms customers, for example by engaging in price gouging.156 The regulatory framework varies between states, but all require electricity rates to be “just and reasonable,”157 which has been interpreted to mean that rates must be “neither less than compensatory nor excessive.”158 To achieve that balance, state utility commissions set rates using a cost of service approach, under which electric utilities are permitted to earn a reasonable return on investments and recover reasonably incurred expenses.159

In some states, rate case proceedings are held on a fixed schedule (e.g., every three years), while in others they are conducted on an ad hoc basis.160 Rate case proceedings involve judicial-type processes, with parties filing briefs and written evidence and the state utility commission holding hearings in which witnesses appear and can be cross-examined.161 Most state utility commissions also provide an opportunity for non-parties to make statements during the hearing or at other times.162 That is one avenue for raising issues relating

156 See generally REGUL. ASSISTANCE PROJECT, supra note 99, at 5-6. Even in states where the electricity sector has been deregulated, utility commissions continue to regulate rates for monopoly services, such as distribution.
159 REGUL. ASSISTANCE PROJECT, supra note 99, at 5.
160 Id. at 40.
161 Id. at 41-45.
162 Id. at 44.
Box 7: State Utility Commissions’ Authority to Consider Environmental Issues

State utility commissions are often thought of as economic regulators, responsible solely for ensuring that electric utilities deliver reliable service at low cost.\(^{163}\) As such, environmental issues are often thought to fall outside the purview of state utility commissions, and instead be the exclusive responsibility of environmental protection agencies.\(^{164}\) In fact, however, state utility commissions often can and do act on environmental issues. A 2006 study found that “[f]ifteen state commissions have statutes explicitly setting out a general authority or obligation to consider environmental matters” and others have “implicit authority” to do so “through their general charge that regulation of public utilities furthers the public interest.”\(^{165}\)

Environmental issues are most commonly dealt with by state utility commissions in the context of facility siting decisions.\(^{166}\) Those decisions may provide another avenue for identifying and assessing climate risks to electric utility infrastructure.

State statutes often expressly require state utility commissions to consider the environmental impacts of proposed infrastructure in their siting decisions.\(^{167}\) In several states, the requirement is expressed in broadly-applicable environmental review statutes, which emulate the National Environmental Policy Act (“NEPA”).\(^{168}\) Briefly, NEPA requires federal agencies to evaluate the environmental impacts of major projects they conduct, fund, or authorize.\(^{169}\) Agencies must consider environmental impacts against baseline conditions in the project area and account for climate change when defining the baseline.\(^{170}\) Multiple federal courts have held that agencies must consider how a proposed project will be affected by increasing temperatures, sea level rise, and other climate-induced phenomena.\(^{171}\)

Consistent with the federal precedent, in states with their own “little NEPA” statutes, agencies are often required or encouraged to consider the impacts of climate change on projects as part of their environmental reviews. In Massachusetts, for example, state agencies are required to consider “predicted sea level rise” and other “reasonably foreseeable climate change impacts” when approving new projects.\(^{172}\) The Massachusetts Executive Office of Energy and Environmental Affairs has proposed that, for each project, agencies prepare a so-called “climate impact assessment” that evaluates the potential effects on the project of sea level rise, changes in precipitation, and changes in average and extreme temperatures, and the appropriateness of measures designed to reduce or avoid those impacts.\(^{173}\) These issues could be considered by the Massachusetts Department of Public Utilities, for example, when reviewing proposals for new transmission infrastructure.\(^{174}\) In Massachusetts and other states, third-parties can comment on proposals and intervene in review proceedings, which provides an opportunity to push for consideration of climate impacts.\(^{175}\)

164 id.
165 id. at 1-2.
166 Decisions regarding facility siting are the responsibility of the utility commissions in some (but not all) states.
167 Dworkin et al., supra note 156, at 3 (“in thirty states, certification and siting review includes consideration of environmental protection.”).
169 id.
170 See generally Council on Environmental Quality, Considering Cumulative Effects under the National Environmental Policy Act 41 (1997), https://perma.cc/WSFY-92QC. In July 2020, the Council on Environmental Quality finalized revisions to its NEPA implementing regulations, which eliminate the former requirement to consider “cumulative effects” in environmental reviews. This will have the effect of limiting consideration of climate change in environmental reviews. However, the revised regulations continue to require agencies to consider climate impacts when defining the baseline, at least in some circumstances. See Update to the Regulations implementing the Procedural Provisions of the National Environmental Policy Act, 85 Fed. Reg. 43,304, 43,331 (July 15, 2020) (“[A]gencies will consider predictable environmental trends in the area in the baseline analysis of the affected environment,” including “[trends determined to be a consequence of climate change.”)
172 MASS. GEN. LAWS. ch. 30, § 61.
to climate resilience planning in rate case proceedings, which requires only minimal investments of time and other resources by the raising entity. It should, however, be noted that state utility commissions generally attach less weight to statements made by non-parties.176 For that reason, interested persons may choose to formally intervene in, and become parties to, the rate case proceeding.

Intervention refers to the process by which interested persons obtain approval from the state utility commission to participate in rate case or other proceedings. Each commission has its own rules regarding participation, with most requiring third parties to file a petition to intervene, which explains their interest in the case and reasons for intervening.177 Some state utility commissions require would-be intervenors to demonstrate that their legal rights or duties will be substantially affected by the outcome of the proceeding and/or that their interests are not sufficiently represented by other parties.178 Although some state utility commissions restrict intervention,179 many are highly permissive of it and merely require a showing that it is “in the public interest.”180 However, there may be other, practical challenges associated with intervening in rate case proceedings. Such proceedings can last for several months and are highly complex, dealing with a broad range of technical issues, most of which have little or no relevance to climate resilience planning. Nevertheless, even if an intervenor is focused solely on that one issue, he/she/it may need to be represented in hearings concerning other matters.181 Intervenors may need to engage outside legal counsel to represent them and/or expert witnesses to appear on their behalf which can be highly costly.182

The remainder of this subpart discusses three key rate-making principles that could be relied on to advance climate resilience planning in rate case proceedings: (1) the prudence standard, (2) the used and useful test, and (3) the least cost principle.

3.1.1 The Prudence Standard

Prudence is a central tenet of electric utility rate regulation.183 Electric utilities are typically only permitted to recover prudent and necessary operating expenses and earn a return on prudent used and useful capital investments.184 State utility commissions assess prudence by considering what a reasonable, professional utility manager would have done given the information that was known or knowable at the time.185 The prudence standard has thus been described as similar to the reasonable person standard applied in tort law.186

176 id. at 44-45.

177 See, e.g., MO. CODE REGS. ANN. tit. 4, § 240-2.075 (requiring petitions to intervene to be filed within 30 days after the commission gives notice of the case and include information about the petitioner, including a statement of his/her/its “interest in the case and reasons for seeking intervention”); OR. ADMIN. R. 860-001-0300 (requiring petitions to intervene to contain basic information about the petitioner, “[t]he nature and extent of the petitioner’s interest in the proceedings,” and “[t]he issues petitioner intends to raise at the proceedings”).

178 See, e.g., KAN. ADMIN. REGS. § 82-1-225 (providing that a petition for intervention may only be granted if it “states facts demonstrating that the petitioner’s legal rights, duties, privileges, immunities, or other legal interests may be substantially affected by the proceeding”); OHIO ADMIN. CODE 4901-1-11 (allowing intervention by anyone who “has a real and substantial interest in the proceeding” and who “is so situated that the disposition of the proceeding may . . . impair or impede his or her ability to protect that interest, unless the person’s interest is adequately represented by existing parties”).

180 See, e.g., 52 PA. CODE § 5.72 (allowing intervention where the petitioner has an “interest of such nature that participation by the petitioner may be in the public interest”); WASH. ADMIN. CODE § 480-07-355 (allowing intervention “if the petitioner’s participation is in the public interest”).

181 The requirements regarding participation in hearings vary between states. In some states, intervenors must be represented at all or most of the hearing; even those portions that do not relate directly to climate resilience planning. In other states, intervenors have more flexibility, and can choose to only be represented at parts of the hearing.

182 In some states, electric utilities provide limited funding to intervenors, but that funding is often only available to those representing consumer groups. See generally Or. Pub. Util. Comm’n, Intervenor Funding, https://perma.cc/2AR7-TV6E (last visited Oct. 21, 2020).

184 See generally REGUL. ASSISTANCE PROJECT, supra note 99, at 47, 51-52, 57-58. Some states do not require electric utilities to establish that their capital investments resulted in assets that are “used and useful.” See infra Part 3.1.2.

185 Jarvis, supra note 101, at 1042.

186 See, e.g., Appeal of Conservation L. Found., 507 A.2d at 673 (holding that the prudence standard “essentially applies an analogue of the common law negligence standard for determining whether to exclude value from rate base”).

In rate case proceedings, the burden of demonstrating prudence falls on the electric utility, which must prove that it acted reasonably in the circumstances. This requires a showing that the electric utility engaged in a sound decision-making process in which it took appropriate steps to obtain relevant information and evaluated that information in reaching its conclusion. As the Louisiana supreme court observed in *Gulf States Utilities Co. v. Louisiana Public Service Commission*, “the utility must demonstrate that it went through a reasonable . . . process to arrive at a course of action and, given the facts as they were or should have been known at the time, responded in a reasonable manner.” The Louisiana supreme court held that, to satisfy the prudence standard, the utility’s decision-making process must have been “logical” and based on “information and planning techniques known or knowable at the time” the decision was made. However, in the case of long-running investment projects, the electric utility is not merely expected to act prudently at the outset, but throughout. Thus, according to the Louisiana supreme court, electric utilities must “respond prudently to changing circumstances or new challenges that arise as the project progresses.” Courts and public utility commissions in other states have applied the prudence standard similarly.

Applying the above principles, the prudence standard requires electric utilities to employ established techniques to evaluate and manage climate risks when making investment and other operational decisions that impact rates. The physical risks to electric system operation from increasing temperatures, more severe storms and wildfires, and other climate impacts have been well-documented in numerous government and independent reports. Electric utilities, therefore, can no longer feign ignorance. To use the parlance of the Louisiana supreme court, electric utilities now know, or should know, that the impacts of climate change pose material risks to their operations and assets. Indeed, many have admitted as much in their filings with the SEC and other documents.

In this context, for electric utilities’ decisions to be considered “logical” and “reasonable,” they must integrate climate risk into their decision-making processes. Indeed, since many utility investment decisions involve assets that are intended to remain in operation for forty years or more, it is impossible to make rational choices without accounting for long-term climate impacts. Such climate-focused decision-making has been advocated by corporate analysts and advisors, including McKinsey and Company, which recently stated:

> Climate change needs to become a major feature in corporate and public-sector decision making. . . . For companies, this will mean taking climate considerations into account when looking at capital allocation, development of products or services, and supply chain management, for example. Large capital projects would be evaluated in a way that reflects the increased probability of climate hazards at their location: How will that probability change over time? What are the possible changes in cost of capital for exposed assets? How will climate risk affect the broader market context and other implicit assumptions in the investment case?

Climate resilience planning enables electric utilities to answer these and other questions, thereby ensuring that their investment decisions are prudent in light of climate change. The techniques for climate resilience planning . . .
PART 3: ADVANCING CLIMATE RESILIENCE PLANNING THROUGH ELECTRIC UTILITY REGULATORY PROCEEDINGS

are well-established and have already been put into practice by some electric utilities. The Con Ed Climate Study, discussed in Part 2.3, demonstrates that the necessary tools and data are available to evaluate the impacts of climate change over long periods and develop flexible resilience pathways to manage those impacts. In short, no electric utility or state utility commission can deny that the reasons for, and process of, climate resilience planning are now “known or knowable.”

Given the above, in order to meet the prudence standard, electric utilities must engage in climate resilience planning and consider the findings thereof when making investment decisions. State utility commissions could mandate climate resilience planning by electric utilities on that basis. Moreover, regardless of whether state utility commissions impose such a mandate, electric utilities that fail to engage in climate resilience planning could have their investment decisions challenged in rate case proceedings. Such challenges could be used as leverage to secure a commitment from the relevant electric utility to engage in climate resilience planning.

At the time of writing, at least two electric utilities—Duke Energy Carolinas, LLC (“DEC”) and Duke Energy Progress, LLC (“DEP”)—had seen their expenditures challenged in rate case proceedings for DEC before the North Carolina Utilities Commission, challenging its request to recover “[c]osts incurred to maintain and modernize the electric system, DEC/DEP did not have a mandate, which would send a strong signal as to the importance of climate resilience planning and encourage other utilities to engage in the process.

Both challenges raised the same broad argument. Vote Solar noted that, in developing their plans to maintain and modernize the electric system, DEC/DEP did not conduct a climate vulnerability assessment or any similar study of climate impacts, purportedly because they were “unable to say with certainty what the future impacts of climate change may or may not be.” Vote Solar argued that, due to DEC/DEP’s failure to consider climate change, there was insufficient evidence “to determine if the Compan[ies] made the most prudent prioritization and investments in light of [their] actual, projected climate risk.”

Before the North Carolina Utilities Commission could rule on this issue, the parties reached a settlement under which DEC/DEP agreed to convene Climate Risk and Resilience Working Groups, which will look at ways to assess the impacts of climate change on the DEC/DEP system and integrate consideration of those impacts into DEC/DEP planning.

3.1.2 The Used and Useful Test

Electric utilities that fail to adequately prepare for the impacts of climate change also risk being denied cost recovery for their capital investments under the “used and useful” test. Where that test applies, electric utilities are only permitted to include in their rate base, and claim depreciation and other expenses on, capital investments that are physically used and useful in providing services to customers. The distinction between used and useful is somewhat blurry. Generally,
PART 3: ADVANCING CLIMATE RESILIENCE PLANNING THROUGH ELECTRIC UTILITY REGULATORY PROCEEDINGS

However, state utility commissions look at whether an investment resulted in an asset that is physically providing services (and is thus “used”) and whether that asset is actually needed to provide those services (and thus “useful”).

The used and useful test is most commonly employed to prevent electric utilities including in their rate base investments in assets that are still under construction. Once an asset is completed and placed into service, the electric utility’s investment is typically added to its rate base. In each subsequent rate case proceeding, the state utility commission verifies that the asset is still used and useful, and will remain so for the period during which the rates will be in effect. An asset must be removed from rate base if it ceases to be used and useful, for example, because of chronic operational problems that take it out of service for extended periods. In this regard, the Pennsylvania Public Utility Commission has held that “[t]he length of time [an] asset may be out of service and not removed from rate base depends upon the nature of the plant, the degree to which the outages can be expected to occur during normal operation of the plant, and the certainty with which resumption of service can be predicted.”

Prolonged outages (e.g., of a year or more) that are not expected with normal operation of assets may result in the assets being found to be not used and useful and thus removed from rate base.

Without adequate planning and investment in resilience, climate impacts could render electric system assets inoperable, either permanently or for extended periods. Sea level rise is perhaps the most obvious example. A 2014 DOE study found that in Houston, Los Angeles, Miami, and New York City alone up to forty-five energy facilities could be inundated due to sea level rise by 2050. Other climate impacts could also lead to premature facility retirement or service interruptions. Indeed, just this year, Xcel Energy accelerated its plans to close a coal plant in New Mexico due to water scarcity issues. As climate impacts worsen, more assets will be affected. For instance, the Con Ed Climate Study found that increasing temperatures would accelerate the aging of substation transformers, for which the design reference temperature is lower than the temperature projected to occur in the future due to climate change.

Climate-affected facilities that retire prematurely will cease to be used and useful and thus effectively become stranded assets, the costs of which cannot be recovered by electric utilities in rates. The used and useful test would also prevent electric utilities from recovering the costs of assets that experience regular and/or extended outages due to the impacts of climate change. As noted above, in the past, facilities experiencing non-routine outages, which are not “expected to occur during normal operations” (e.g., maintenance), have been treated as not used and useful and therefore excluded from the electric utility’s rate base.

3.1.3 The Least Cost Principle

By applying the prudence standard and/or used and useful test, state utility commissions ensure that electric utilities are only reimbursed for expenses that were reasonably incurred, and deliver benefits to customers. This is consistent with the overarching goal of electric utility regulation—i.e., to ensure “just and reasonable” rates that appropriately balance utilities’

206 The used and useful test has also been employed to exclude from rate base assets that are surplus to the utility’s requirements. For example, where an electric utility has a 1000 megawatt short-fall in generating capacity and adds a new 2000 megawatt plant, the excess 1000 megawatts of supply may be temporarily excluded from rate base until demand increases. See generally Van Nostrand, supra note 170, at 139-42.
210 Id. (holding that a generating facility expected to be offline for two to four years must be removed from rate base because such facilities “by their nature are not expected to experience” such prolonged outages).
213 CONSOLIDATED EDISON, supra note 37, at 40. The transformers have a design reference temperature of 86°F. In the future, however, New York City is projected to experience up to 26 days per year above 86°F, and 23 days above 95°F. See id. at 19.
214 Metro. Edison Co., 53 Pa. PUC at 333 holding that “[t]he length of time which utility plant may be out of service and not removed from rate base depends upon the nature of the plant, the degree to which the outage can be expected to occur during normal operation of the plant, and the certainty with which resumption of service can be predicted”).
need to earn sufficient revenue to maintain their systems and make new investments against customers’ interest in keeping prices low. The interest in keeping customer prices low has a particularly significant influence on state utility commissions’ regulatory decisions.

Legislation in several states expressly identifies cost minimization as a goal of electric utility regulation. In Vermont, for example, legislation calls for “meeting the public’s need for energy services . . . at the lowest present value life cycle cost.” Legislation in South Carolina similarly declares a policy in favor of “minimiz[ing] the cost of energy throughout the state.” Even absent this type of express statutory direction, state utility commissions have generally applied the principle of “least cost” when setting rates. In rate case and other proceedings, state utility commissions have required electric utilities to take various steps to reduce electricity costs, while maintaining service reliability. For example, as discussed in Part 2.2 above, electric utilities in thirty-six states are now required to engage in a process of integrated resource planning that is intended to identify the optimal resource mix that will ensure long-term service reliability at least cost.

Requiring electric utilities to engage in climate resilience planning furthers the goal of reducing electricity costs while maintaining utilities’ ability to provide reliable service. As discussed in Part 2.2 above, such planning enables electric utilities to design new assets and systems that are “resilient from the start,” thereby avoiding the need for costly retrofits in the future. It also facilitates action to improve electric utilities ability to avoid or quickly recover from outages which further reduces costs. The reductions are likely to more than offset any costs incurred by electric utilities to enhance their climate resilience.

A 2019 study by McKinsey and Company found that, if left unaddressed, climate change would cause the storm damage and outage costs incurred by a typical electric utility to increase by at least twenty-three percent or $300 million to $1.7 billion by 2050. In comparison, according to the study:

[It] would take $700 million to $1 billion for a typical Southeastern US utility to prepare for impacts related to climate change. That is . . . much less than the projected future storm costs of $1.7 billion. While each utility’s cost-benefit calculation will differ based on its unique risk exposure profile and infrastructure costs, our conclusion is that it pays to prepare for extreme weather . . . There are also likely to be ancillary benefits, such as improved reliability and enhanced diversity of supply.

Confirming McKinsey and Company’s conclusion, a 2020 study found that due to the impacts of climate change, spending on transmission and distribution infrastructure could increase by up twenty-five percent or $24 billion per year by 2090. The study further found that designing new infrastructure based on projected climate conditions over its useful life “roughly halves the expected costs of climate change experienced in 2090” compared to a scenario in which no adjustments are made to infrastructure design. Requiring electric utilities to take steps to enhance their resilience to climate change is, therefore, fully consistent with the least cost principle employed by state utility commissions when setting electricity rates.

215 Farmer’s Union Cent. Exch., Inc. v. Fed. Energy Reg’l Comm’n, 734 F.2d 1486, 1502 (D.C. Cir. 1984) (holding that, in setting rates, state utility commissions must balance the interests of electricity suppliers and their customers to determine a level that is “neither less than compensatory nor excessive”).

216 See generally Jeremy Knee, Rational Electricity Regulation: Environmental Impacts and the “Public Interest”, 113 W. VA. L. REV. 739 (2011) (concluding that state utility commissions have generally exercised their ratemaking authority so as to “minimize[e] costs to consumers”).

217 VT. CODE ANN. tit. 30, § 218c(1).

219 See, e.g., Re Ky. Power Co., 2010 WL 2640998 (Ky. Pub. Serv. Comm’n June 28, 2010) (recognizing that “least cost” is one of the fundamental principles utilized when setting rates that are fair, just, and reasonable).

220 Girouard, supra note 71; see also Energy Policy Act of 1992, Pub. L. No. 102-486, § 111(d) (amending section 3 of the Public Utility Regulatory Policy Act to insert a new definition of “integrated resource planning” as follows: “The term ‘integrated resource planning’ means, in the case of an electric utility, a planning and selection process for new resources that evaluates the full range of alternatives . . . in order to provide adequate and reliable service to its electric customers at the lowest system cost” (emphasis added)).

221 Sarah Brody et al., Why, and How, Utilities Should Start to Manage Climate-Change Risk, MCKINSEY & CO. INSIGHTS (Apr. 24, 2019), https://perma.cc/R84Q-YKMY. This is a conservative estimate because it only accounts for “regional increases in extreme weather or storm damage due to sea-level” and no other climate impacts. See id.

222 Id.

224 Id.

225 It should be noted that the least cost principle could be relied upon to challenge cost recovery for climate resilience planning and investment. Those activities often involve significant upfront costs, which may necessitate consumer rate increases, at least in the short term. In the longer term, however, climate resilience planning and investments should generate cost savings that can be passed onto ratepayers, as discussed above.
Box 8: Cost Recovery for Climate Resilience Planning and Investments

While it delivers many benefits, climate resilience planning also involves costs. Electric utilities must generally engage consultants or other researchers to develop localized climate projections and analyze the impact of projected conditions on assets (see Box 2 and Box 3). Where vulnerable assets are identified, electric utilities may need to make material investments to enhance their resilience, for example through hardening or relocation. Electric utilities may be discouraged from investing by uncertainty as to whether, when, and how they will be permitted to recover their costs.226

In the case of capital investments, cost recovery typically does not occur until after the electric utility has invested and the relevant state utility commission has determined that the investment was “prudent” and/or resulted in an asset that is “used and useful” (among other requirements).227 This approach ensures that customers are not burdened with inappropriately incurred costs, but can discourage innovation by electric utilities concerned about the potential for disallowance of investments with novel or unquantified benefits. This is likely to be a particular issue with resilience investments, the benefits of which are often uncertain or difficult to quantify.228 Compounding this problem, even where benefits are known and quantifiable, they may not be taken into account by state utility commissions. A 2017 study by the Lawrence Berkeley National Laboratory found that several state utility commissions consider only a “[l]imited number of benefit categories” when evaluating resilience investments.229 For example, the Florida Public Service Commission focuses solely on the value of avoiding physical damage to electric utility infrastructure and does not account for the value to customers of avoiding service interruptions,230 despite the many tools available to estimate customer interruption costs.231 State utility commissions should employ those and other tools to assess the full range of benefits of resilience investments. They should also look at using alternatives to cost-benefit analysis, such as breakeven analysis or RDM, to evaluate resilience investments (see Box 3).

Even if electric utilities are permitted to recover resilience investments, the regulatory lag—i.e., the gap between when the investments are made and when cost recovery occurs—could undermine their financial viability.232 This is likely to be less of an issue in states where rate case proceedings are held on an ad hoc basis because, in those states, the electric utility can request adjustment of its rates to reflect new investments when they are made. This is not, however, possible in states where rate case proceedings are held on a fixed schedule (e.g., every three years). In those states, cost recovery may be delayed, which could affect the electric utility’s credit rating and thus its ability to obtain financing on reasonable terms. It could also lead to declining profits because the utility is required to cover financing costs internally for long periods of time.

Given the above, electric utilities may want to obtain pre-approval of resilience investments, and/or recover their costs as they are incurred. This could be achieved through cost tracking which, in simple terms, allows a utility to recover the costs associated with a specific activity on a periodic basis outside of its rate case.233 Historically, cost tracking was only permitted for substantial, variable, and uncontrollable costs that could threaten the utility’s financial viability if not recovered outside its rate case (e.g., fuel costs).234 More recently, however, cost tracking has been permitted in a broader range of circumstances. For example, some state utility commissions have allowed cost tracking for investments in grid modernization technologies (e.g., advanced metering), reasoning that utilities may otherwise be reluctant to invest therein due to their high costs and unquantified benefits.235 The same will often be true of resilience investments. The appropriateness of allowing cost tracking for resilience investments must be assessed on a case-by-case basis and appropriate customer safeguards put in place. In the grid modernization context, some state utility commissions have capped the total amount utilities can recover through cost tracking and dealt with variations through risk sharing mechanisms, under which cost overruns are borne primarily by the utility and cost under-runs allocated primarily to customers.236 A similar approach could be used for resilience investments.

226 See supra note 5.
227 As discussed above, some state utility commissions only apply one of the two standards. See supra note 203.
228 See supra Part 2.1.
230 Id. at 25.
3.2 Petitioning the State Utility Commission to Require Climate Resilience Planning

As well as addressing climate risk through rate case proceedings for specific electric utilities, state utility commissions could also deal with the issue in general rulemaking proceedings, involving all electric utilities under their jurisdiction. Through such proceedings a state utility commission could adopt an administrative order or regulation directing electric utilities to engage in climate resilience planning. The CPUC recently did just that, issuing a decision in August 2020 that requires investor-owned electric and gas utilities in California to periodically evaluate risks to their assets, operations, and services from the impacts of climate change. The CPUC decision could serve as a model for other state utility commissions.

The CPUC’s work on climate resilience was prompted, in part, by an executive order issued by then-California Governor Jerry Brown in April 2015. The executive order noted that the impacts of climate change “pose tremendous risks to [California’s] people, agriculture, economy, infrastructure and the environment” and that accounting for those risks “in planning and decision making will help the state make more informed decisions and avoid high costs in the future.” To that end, the executive order directed the California Natural Resources Agency to develop and maintain a state-wide climate adaptation strategy, which identifies “vulnerabilities to climate change by sector” and “priority actions” to reduce those vulnerabilities. The California Natural Resources Agency appointed the CPUC, California Energy Commission, and California Department of General Services to lead adaptation efforts in the energy sector. The CPUC subsequently commenced a rulemaking proceeding on its own motion “to consider how to address climate change adaptation for the investor-owned electric and gas utilities” it regulates.

Several other states also have policies regarding climate change adaptation, which could serve as the foundation for state utility commission action on the issue. For example, in October 2019, New Jersey Governor Philip Murphy signed an executive order mandating the development of a Statewide Climate Change Resiliency Strategy outlining measures the state should take to adapt to the impacts of climate change. In justifying the need for such a strategy, Governor Murphy noted that “the severity of future impacts of climate change on our state will directly depend on the willingness and ability of communities, businesses, industries, and government entities to integrate climate change considerations into planning and decision-making.” The Governor declared a state-wide policy requiring agencies to “take proactive and coordinated efforts” to plan for, and protect against, climate impacts. That policy could be relied upon by the New Jersey Board of Public Utilities to justify commencing proceedings on electric utility climate resilience.

Where state utility commissions fail to act on climate resilience planning of their own initiative, third parties could petition them to do so. An example of this occurred in December 2012, when a coalition of environmental and public interest organizations filed a petition with the NYSPSC, requesting that it direct all electric and other utilities under its jurisdiction to evaluate and plan for climate impacts. The NYSPSC did not take any formal action in response to the petition.
but, in a letter to the petitioners, then acting secretary of the Commission Jeffrey Cohen noted that New York Governor Andrew Cuomo had called for climate resilience planning and indicated that staff were working to identify planning approaches that were in the “best interests of ratepayers.” The issues raised in the petition were ultimately dealt with in the Resiliency Collaborative convened by the NYPSC as part of Con Ed’s 2013 rate case.

Like the NYPSC, other state utility commissions also allow third parties to file petitions seeking declaratory orders or the adoption or amendment of regulations. While the filing rules vary between states, there are often no or few restrictions on who can petition the commission, with many states allowing any person to do so, even if they do not have a demonstrated legal interest in the matter at issue. Thus, unlike intervenors in rate case proceedings (discussed above), petitioners are often not required to show that their legal rights or duties will be affected by the outcome of the petition.

State utility commissions typically require petitions seeking the adoption or amendment of regulations to include suggested regulatory language. Petitions must also explain why regulatory or other action is being sought, the anticipated effects of such action, and the commission’s legal authority to take it. The latter is particularly important because, as most are statutory creations, state utility commissions can only act on petitions to the extent permitted under their authorizing statutes and related judicial decisions.

Petitions regarding climate resilience planning could point to a number of legal principles that authorize, and in some cases even require, state utility commissions to act. Perhaps most notably, state utility commissions are responsible for ensuring that electric utilities fulfill their statutory “duty to serve,” including by providing reliable services to customers. Climate resilience planning by electric utilities is necessary to assure long-term service reliability and thus fulfill the duty to serve.

Originally developed through the common law, and now codified in state statutes, the duty to serve has been described as requiring electric utilities “to provide extraordinary levels of service to customers.” The duty encompasses, among other things, an obligation to provide “adequate service.” While each state has its own formulation, service adequacy is often defined in terms of reliability, with electric utilities expected to take appropriate steps to prevent outages and restore service promptly when they occur. As the California supreme court succinctly explained more than half a century ago in Langley v. Pacific Gas & Electric Co., electric utilities must “exercise reasonable care in operating [their] system[s] so as to avoid unreasonable risks of harm” to their customers as a result of outages.

This principle was recently reiterated by a California court of appeal in Mobil Oil Corp. v. Southern California Edison Co. In that case, the court held that while electric utilities are not expected to (and cannot) prevent all outages, they must take steps to minimize the effect thereof on customers, including by engaging in appropriate planning.

248 See supra Part 2.3.3.
249 See, e.g., OR. ADMIN. R. 860-001-0250 (providing that any “person may petition the Commission to promulgate, amend, or repeal a rule”); see also id. 860-001-0010; OR. REV. STAT. § 765.010(5) (defining “person” to include “individuals, joint ventures, partnerships, corporations, and associations or their officers, employees, agents, lessees, assignees, trustees or receivers”).
250 See supra Part 3.1.
251 See, e.g., CAL. CODE REGS. tit. 20, § 6.3(b) (stating that, where a petition seeks “adoption or amendment of a regulation,” it “must include specific proposed wording for that regulation”).
252 See, e.g., OR. ADMIN. R. 137-001-0070 (requiring petitions to include “[f]acts or arguments in sufficient detail to show the reasons for and effects of adoption, amendment, or repeal of the rule” and “[a]ll propositions of law to be asserted by the petitioner”).
253 Some state utility commissions are established in the relevant state constitution. See, e.g., CAL. CONST., art. XII.
256 See, e.g., CAL. PUB. UTIL. CODE § 451 (“Every public utility shall maintain such adequate, efficient, just, and reasonable service, instrumentalities, equipment, and facilities . . . as are necessary [sic] to promote the safety, health, comfort, and convenience of its patrons, employees, and the public.”); N.J. STAT. ANN. § 48:2-23 (“The board may . . . require any public utility to furnish safe, adequate and proper service.”); 66 PA. CONS. STAT § 1501 (“Every public utility shall furnish and maintain adequate, efficent, safe, and reasonable service and facilities.”).
257 See generally Note, The Duty of a Public Utility to Render Adequate Service: Its Scope and Enforcement, 62 COLUM. L. REV. 312, 312-13 (1962) (noting that, while “[t]he standard of adequacy is incapable of precise definition,” state statutes generally require utilities to “provide safe, continuous, comfortable, and efficient service,” and “to take precautions against [service interruptions] and to restore service as quickly as possible” (internal citations omitted)).
260 id. at *23-24.
Unless electric utilities plan for climate change, the more frequent and severe storms and other extreme weather events it brings will lead to additional and longer-lasting electricity outages, with potentially severe consequences for customers. Electric utilities can, however, minimize the risk of outages and their effect on customers by engaging in climate resilience planning. As discussed in Part 2.1, climate resilience planning enables electric utilities to identify where and when their systems are vulnerable to the impacts of climate change and develop solutions to mitigate those vulnerabilities, such that they can continue to provide reliable electricity services to customers despite climate change.

Requiring electric utilities to take steps to avoid future reliability issues falls squarely within state utility commissions’ regulatory mandate. There is no doubt that climate resilience planning is necessary for electric utilities to operate their systems with “reasonable care” so as to “avoid unreasonable risks of harm” to their customers. Indeed, with the impacts of climate change and their effects on electric systems now well documented in numerous government and other reports, it is not reasonable for electric utilities to continue operating their systems based on past climate conditions. Doing so exposes customers to an unreasonable risk of harm from increasingly frequent and severe outages, which could be avoided or mitigated by employing proven climate resilience planning techniques.

Relatedly, where state law imposes requirements on electric utilities with respect to storm or other extreme event preparedness that provides another legal justification for requiring climate resilience planning. For example, the December 2012 petition filed with the NYPSC cited section 66 of the New York Public Service Law, which requires electric utilities to develop “emergency response plans” that outline measures to prepare for, and ensure prompt restoration of service after, storms and similar events. The petition noted that electric utilities’ emergency response plans focus solely “on anticipation and response to disasters in the short-term” and argued that “[a]dequately planning for storms, as required under the Public Service Law, requires long-term assessment of risks,” based on “future climate predictions.” This enables electric utilities to make a more informed assessment of how frequently storms will occur, their likely severity, and what system changes are needed to prevent and manage associated outages.

260 See supra note 14.
261 NYPSC Petition, supra note 246, at 5; see also N.Y. PUB. SERV. LAW § 66. Similar planning obligations are imposed on electric utilities in many other states. See, e.g., FLA. STAT. § 366.96; MASS. GEN. LAWS. Ch. 164, § 85B; 25 TEX. ADMIN. CODE § 25.53.
262 NYPSC Petition, supra note 246, at 5–6.
263 Id. at 6.
Advancing Climate Resilience Through Tort Law Claims in State Court

Part 3 considered whether and when state public utility law requires electric utilities to address the consequences of climate change through climate resilience planning. In this Part we consider the use of tort law to advance climate resilience planning in the electric utility sector.

Although factual considerations often remain similar in the context of public utility and tort law, and the evidence identified in Part 2 will be relevant in both areas, the two bodies of law diverge in material ways. Most significantly, whereas claims grounded in public utility law will often center primarily on anticipated impacts of climate change, tort law claims will generally be based upon some prior impact. For the purpose of this paper, we term the contemplated tort law claim a ‘climate resilience claim,’ and define it as a claim arising from an electric utility’s failure to adequately prepare for reasonably foreseeable event- and non-event-based climate impacts to owned assets and/or operations where that failure results in cognizable harm. Cognizable harm could include injury to persons and/or property damage resulting from electricity service outages, for example where a heat wave causes a transmission line to sag, triggering an outage that results in a blackout at the premises of a customer who uses electricity to power a medical device. Climate resilience claims could also arise in situations where the harm (e.g., personal injury or property damage) is not directly connected to, or the result of, a service outage. One example might be where transmission line sag caused by a heat wave sparks a wildfire which damages property.264

This Part explores whether and when a climate resilience claim could be brought against an electric utility in connection with its failure to engage in climate resilience planning. The Part proceeds in primarily four subparts, modeled upon common law tort claims. First, the Part explores the bounds of an electric utility’s duty of care, and argues that it encompasses a duty to prepare for the impacts of climate change. Second, the Part describes how such a duty might be breached by failing to engage in climate resilience planning. Four approaches to identifying breach are discussed in particular: risk-utility analysis, the multi-factor balancing test, industry custom, and public policy considerations. Third, causation is considered, with particular emphasis upon proximate cause and foreseeability. Fourth, harm is explored, with the underlying retroactive basis for tort claims noted above distinguished from the fundamentally proactive focus which undergirds state utility commission proceedings. Before turning to those subparts, however, we first address questions of precedent.

4.1 Climate Resilience Claims and Precedent

In examining climate resilience claims, this work draws primarily from three sources of precedent: (1) extreme weather tort claims, (2) statutory failure to adapt claims, and (3) tort claims premised on defendant’s direct greenhouse gas emissions or sale of fossil fuels. Climate resilience claims, however, are premised upon a different theory and basis than these sources of examined precedent, and are therefore compared and distinguished in this subpart.

In borrowing from precedent, we rely most heavily upon negligence suits brought against electric utilities in the context of extreme weather events, which we term ‘extreme weather tort claims.’ Such claims typically arise from an electric utility’s failure to adequately prepare for, or respond to, a particular extreme weather event that impacts its owned assets or operations. Take, for example, Rich Mountain Electric Cooperative, Inc. v. Revels.265 There, a severe storm took down a tree, which in turn pulled down one of the utility’s distribu-

264 Importantly, we do not foreclose the possibility of some tort law climate resilience claim based on the showing of event not yet occurred. We do not, however, consider such issues here.
265 841 S.W.2d 151 (Ark. 1992).
Extreme weather tort claims and climate resilience claims share similarities. The form of the injury can overlap and questions of foreseeability are often central to analysis. Yet the claims diverge in important ways. Temporally, an extreme weather tort claim generally focuses on the electric utility’s immediate actions in response to an impending or recently occurred event, and questions of negligence center upon the reasonableness of that activity within a relatively short timeframe. The focus of Rich Mountain Electric, for example, was upon utility action in the hours before and after the storm. A climate resilience claim, however, is focused on the sufficiency of longer-term utility planning for climate change. The focus is on whether the utility has adequately incorporated climate considerations into its operating procedures, practices, and decisions regarding capital investments and expenditures. These distinctions have important implications for utility obligation. While an extreme weather tort claim may focus inquiry on whether, for example, the utility’s emergency response or customer notification was reasonable, a climate resilience claim would center analysis on the extent to which the utility’s long-term planning reasonably considered the impacts of climate change on assets and operations.

Looking forward, extreme weather tort claims and climate resilience claims may be complementary and brought together. Because both claims can be premised upon similar events and harms, but are differentiated by their legal theories, future actions may present both to the court to capture a wider range of utility policies and practices.

A second body of relevant precedent is found in statutory “failure to adapt” lawsuits. These cases, like the Conservation Law Foundation’s (“CLF”) lawsuits against ExxonMobil and Shell, are premised on each defendant’s failure to consider climate change impacts in complying with their statutory and permitting obligations. In both cases, CLF alleges that the companies failed to consider known climate change-induced effects in designing and implementing protective measures for their facilities as required by federal law. These claims provide helpful comparison, as they, like climate resilience claims, premise argument upon an actor’s failure to plan for reasonably foreseeable impacts of climate change to assets and operation. These claims should be distinguished, however, as they have a statutory basis, whereas climate resilience claims are premised upon common law obligations.

Third and finally, we also consider tort law claims premised on an entity’s contribution to climate change, either direct or indirect. Some cases, like American Electric Power Co. v. Connecticut, brought under federal common law, sought to hold defendants liable for their direct emission of climate-damaging greenhouse gases. Other cases have been brought against fossil fuel companies in respect of the climate damage caused by the production and use of their products. Two recent examples are City of Baltimore v. BP and County of San Mateo v. Chevron. There,
Box 9: Wildfires and Climate Resilience Claims

Recent wildfires in the western U.S. serve as an increasingly alarming and visible example of climate change-amplified extreme weather. Entities charged with operation of the electric grid increasingly acknowledge the intersections among extreme weather, electricity service, and consequences of climate change. The CAISO concluded, for example, that “climate change-induced extreme heat storm across the western U.S.” contributed to recent supply shortfalls and electricity outages\(^{277}\) (see Box 4). The CPUC has likewise made clear that utilities “need to ensure a comprehensive approach to climate change risk is developed across all of the [utilities’] various departments to ensure a comprehensive approach to the [utilities’] climate change adaptation efforts.”\(^{278}\)

Wildfires in the western U.S. have also been the focus of significant litigation, with the 2018 Camp Fire a primary example. The Camp Fire, sparked by a faulty electric transmission line owned by PG&E and worsened by climate change-induced drought and high temperatures, resulted in the deadliest and most destructive wildfire in California’s history at the time, with over 153,000 acres burned, 18,000 structures destroyed, and 85 fatalities.\(^{279}\) PG&E faced a variety of subsequent claims and claimants, ultimately resulting in criminal charges, bankruptcy, and a CPUC approved settlement (among other things).

The CPUC’s Safety and Enforcement Division found a number of failures on the part of PG&E in the context of the Camp Fire, including failure to maintain, reinforce, and regularly inspect its transmission lines and other equipment. The CPUC itself found that the utility had a “demonstrated record of failing to comply with Commission directives, including those related to vegetation management.”\(^{280}\)

Failure to properly maintain equipment serves as a basis for many extreme weather tort claims. In *Arkansas Valley Electric Cooperative Corp. v. Davis*, for example, the plaintiff was injured after coming into contact with a fallen electric power line.\(^{281}\) The plaintiff argued that the injury was due to the defendant utility’s negligence in failing to “replace the pole which they knew to be deteriorated” and failing to “maintain the pole and power line.”\(^{282}\) The Arkansas supreme court found that the lower court’s inference of negligence was reasonable and based on substantial evidence, including findings that “the pole was at twenty-five percent strength,” and insufficiently buried.\(^{283}\) The defendant contended in response that the injury was an act of God, meaning a “violent disturbance of the elements such as a storm, a tempest, or a flood.”\(^{284}\) The court, in finding against defendant, carefully distinguished the negligent conduct at issue from a liability due to damages caused “solely by an act of God.”\(^{285}\) The court held that “[i]f an act of God concurs with the negligence or fault of man to proximately cause damages, the negligence or fault is not excused by the act of God.”\(^{286}\)

Failure to properly maintain equipment might also serve as a basis for a climate resilience claim. As noted above, climate-amplified wildfires are increasingly foreseeable, and an electric utility’s failure to adequately prepare for such a reasonably foreseeable event may establish a basis for liability. That is, electric utility planning standards, equipment deployments, investment decisions, and operational decisions must keep pace with the impacts of climate change. Not doing so raises claims of negligence and implicates the electric utility’s duty of care. Why then, has negligence not been the focus of ongoing and multiple PG&E wildfires?\(^{287}\)

Failure to properly maintain equipment might also serve as a basis for a climate resilience claim. As noted above, climate-amplified wildfires are increasingly foreseeable, and an electric utility’s failure to adequately prepare for such a reasonably foreseeable event may establish a basis for liability. That is, electric utility planning standards, equipment deployments, investment decisions, and operational decisions must keep pace with the impacts of climate change. Not doing so raises claims of negligence and implicates the electric utility’s duty of care. Why then, has negligence not been the focus of ongoing and multiple PG&E wildfires?\(^{287}\)

California is unique among states in applying the doctrine of inverse condemnation to its electric utilities. Under this doctrine, electric utilities are “held strictly liable for any wildfire caused by utility equipment regardless of standard of care or negligence.”\(^{288}\) Negligence has not been the standard, and thus not the aim, of litigation.\(^{289}\) Other jurisdictions do not similarly apply inverse condemnation to electric utilities. Some other standard, and most often negligence, will thus be relevant to considering a utility’s liability under a similar fact pattern.

280 Id. at 73.
281 800 S.W.2d 420 (Ark. 1990).
282 Id. at 421.
283 Id. at 422.
284 Id. at 423.
285 Id.
286 Id.
Given the untested nature of climate resilience claims, likely obstacles and challenges are particularly important to consider. Some, such as interaction between civil and public utility commission forums, and potential regulatory barriers such as limitation of liability provisions in utility tariffs are explored in greater detail in Part 5, infra. Others, such as the highly complex and technical nature of the evidence required to establish a climate resilience claim, and variation in tort and utility law across states are not exhaustively addressed in this paper and deserve careful consideration and further attention.

4.2 Duty of Care

In tort law, whether an electric utility has an obligation to consider the consequences of climate change turns first upon the presence of a duty. This duty is most often—but not always, see Box 10—a duty of care. The Restatement (Second) of Torts, describes the duty of care to “denote the fact that the actor is required to conduct himself in a particular manner at the risk that if he does not do so he becomes subject to liability to another to whom the duty is owed for any injury sustained by such other, of which that actor’s conduct is a legal cause.” That is, the law imposes “a duty of reasonable care to avoid foreseeable harm when performing acts that could injure others.” In considering whether a duty of care is present, two inquiries are relevant: “(1) to whom is the duty owed and (2) what does the duty entail.”

4.2.1 To Whom Is the Duty of Care Owed?

The test to be used to identify to whom the duty of care is owed remains a topic of debate, largely centered upon the extent to which inquiry must be relational. Dueling opinions in Palsgraf v. Long Island Railroad, provide two analytic poles. Judge Cardozo’s majority opinion conceived of duty as relational and turning on whether the aggrieved party is within the zone of foreseeable risk. An “act is only negligent with respect to specific parties and specific harms.” In contrast, in his dissenting opinion, Judge Andrews described the duty of care as being “imposed on each one of us to protect society from unnecessary danger, not to protect A, B, or C alone.” Relational inquiry is thus not central, nor instructive, to Judge Andrews’ enunciation. Analysis of these dueling theories of the duty of care is beyond the scope of this particular

287 We do not suggest here that negligence has never been alleged in the context of the 2018 Camp Fire. Rather, we seek to explicate California’s unique liability structure for electric utilities and suggest that a climate resilience claim, rather than application of inverse condemnation doctrine, is more likely relevant to other jurisdictions.

289 We do not suggest here that PG&E was not negligent. Others have opined at length on the utility’s actions and activities. We focus here only of the lack of its relevancy to establishing liability.

290 Plaintiff’s Complaint, Mayor & City Council of Baltimore v. BP P.L.C., No. 24-C-18-004219 (Md. Cir. Ct. July 18, 2019), https://perma.cc/DQ33-WY57 [hereinafter Baltimore Complaint]; Complaint, County of San Mateo v. Chevron, No. 17 Civ. 03222 (Cal. Super. Ct. July 17, 2019), https://perma.cc/7UZ9-D83C [hereinafter San Mateo Complaint]. Suits against fossil fuel companies have also been brought by private parties. See Comer v. Murphy Oil USA, Inc., 585 F.3d 855 (5th Cir. 2009) (holding plaintiffs had standing and that none of the claims presented non-justiciable political questions), reversed and remanded, 607 F.3d 1049 (5th Cir. 2010) (Fifth Circuit local rules require that decisions be vacated when rehearing en banc is granted. In this case, the Fifth Circuit granted rehearing and then lost quorum due to the recusal of a judge. It therefore dismissed the appeal and the let the district court’s dismissal of the case stand because it had already vacated its previous decision.), dismissed on remand, 839 F. Supp. 2d 849 (S.D. Miss. 2012) (holding that the plaintiffs’ claims were barred by the doctrines of res judicata and collateral estoppel or, alternatively, that the plaintiffs did not have standing to assert their claims), affirmed, 718 F.3d 460 (5th Cir. 2013) (upholding the district court’s dismissal of the case on the basis of res judicata).

291 See, e.g., San Mateo Complaint, supra note 277, at ¶¶ 252, 254 (arguing that “[g]iven the grave dangers presented a “reasonable” fossil fuel producer would have warned of those known, inevitable climate effects”); Baltimore Complaint, supra note 277, at ¶ 110 (“Defendants’ production, promotion, marketing of fossil fuel products, simultaneous concealment of the known hazards of those products, and their championing of anti-science campaigns, actually and proximately caused Plaintiff’s injuries.”).

296 Hunter & Salzman, supra note 281, at 1747.

297 Id.
Climate resilience claims are based upon an electric utility’s failure to respond to the consequences of climate change. A defined set of individuals—i.e., those who experience electricity service disruptions or other adverse effects as a result of the utility’s operation in the context of a climate-induced extreme weather event or change in baseline weather conditions—are at risk of harm from the utility’s failure to identify and plan for the impacts of climate change. Even so, however, questions remain as to precisely to whom the electric utility owes a duty of care. Should, for example, the duty be extended to all of the electric utility’s customers? Any individual within the electric utility’s particular service territory? Is service territory even an issue? The duty of care is generally understood to require an assessment of the foreseeability of injury which provides flexibility and malleability in analysis on the basis of evidence. Duty owed does not depend upon nor is it necessarily constrained by “contract, privy of interest or the proximity of relationship.”

Climate resilience claims are based upon an electric utility’s failure to respond to the consequences of climate change. A defined set of individuals—i.e., those who experience electricity service disruptions or other adverse effects as a result of the utility’s operation in the context of a climate-induced extreme weather event or change in baseline weather conditions—are at risk of harm from the utility’s failure to identify and plan for the impacts of climate change. Even so, however, questions remain as to precisely to whom the electric utility owes a duty of care. Should, for example, the duty be extended to all of the electric utility’s customers? Any individual within the electric utility’s particular service territory? Is service territory even an issue? The duty of care is generally understood to require an assessment of the foreseeability of injury which provides flexibility and malleability in analysis on the basis of evidence. Duty owed does not depend upon nor is it necessarily constrained by “contract, privy of interest or the proximity of relationship.”

The holding in Strauss creates specific limitations regarding who is owed a duty. Read narrowly, Strauss suggests that ratepayers alone are foreseeable. But the case may be better interpreted as a floor, rather than a ceiling, in determining who is owed a duty in the context of climate risk. The opinion itself leaves open the possibility, holding that “[a]s this court has long recognized, an obligation rooted in contract may engender a duty owed to those not in privacy.” Limiting duty by contractual relationship is thus not premised in some legal basis, but instead was a choice based in moral values and social policies, used to “limit the legal consequences of wrongs to a controllable degree.” That is, contractual relationship was adopted by the court primarily to limit liability “which could obviously be ‘enormous,’” not due to some intrinsic value in privacy between parties.

4.2.2 What Does the Duty of Care Entail?

The duty of care is generally understood to require an entity to not create unreasonable risk, but precise language varies depending upon the specific tort and jurisdiction. The duty in negligence cases is “to act reasonably or not to act in such a way that creates an
unreasonable risk of harm.” This aspect of the duty inquiry thus centers upon “whether certain sorts of risks . . . are properly within the ambit of [the defendant’s] responsibility.”

Ongoing “failure to adapt” cases, premised upon statutory violation, provide one analogue when considering what the duty of care requires in the climate resilience context. Like climate resilience claims, these cases are oriented to an entity’s failure to plan for reasonably foreseeable climate change impacts, but the statutory text, rather than tort law, informs content and obligation. Conservation Law Foundation v. ExxonMobil and Conservation Law Foundation v. Shell Oil Products US serve as the primary examples. In both cases, plaintiff CLF initiated still-extant citizen suits against ExxonMobil and Shell Oil Products US (“Shell”), respectively, alleging the companies had violated the Resource Conservation and Recovery Act ("RCRA") and the Clean Water Act ("CWA") by failing to incorporate known climate change-induced risks into their required permitting application under the statutes. Specifically, the suits allege that ExxonMobil and Shell failed to account for climate change-induced effects—such as sea level rise, increased precipitation, increased magnitude and frequency of storm events and storm surges, and lack of preventative infrastructure—in their statutorily required stormwater pollution prevention plans, spill prevention, control and countermeasure plans, and facility response programs for their terminals in Massachusetts and Rhode Island (respectively). Of particular import, the statutorily required plans must be made in accordance with “good engineering practices,” but CLF contends the ExxonMobil and Shell plans were not based on information regarding climate change-induced impacts known to reasonably prudent engineers. The complaints assert that ExxonMobil and Shell knew of these impacts, but failed to design and implement protective measures to fortify their terminals as required by federal law.

The interplay between climate risk and possible statutory claims is beyond the scope of this paper, and remains an important area in need of further research. Relevant here, however, is how such claims might provide a model for the duty of care in a climate resilience claim. In both CLF lawsuits, the courts must consider whether the defendants violated the requirements of their permits by failing to consider the known risk of foreseeable climate change impacts. Climate resilience claims would turn on a similar question: whether electric utilities must consider, as part of their duty of care, the known risk of foreseeable climate change impacts on their assets and operations. An electric utility’s duty of care requires one “to act reasonably or not to act in such a way that creates an unreasonable risk of harm.” As demonstrated in Part 2, climate change impacts on electric utilities’ assets and operations are increasingly knowable, as are the consequent risks of harm to utility customers. A reasonable and logical—a prudent—electric utility would integrate climate risk into decision-making. Addressing climate risk through resilience planning may thus be within the ambit of an electric utility’s responsibility.

Elucidating with a high-degree of precision and uniformity what the duty of care entails may prove challenging, however, in a climate resilience claim. Two tort cases brought against electric utilities in connection with extreme weather events highlight different ways that courts have approached a similar inquiry. First, in Praetorian Insurance Co. v. Long Island Power Authority, a New York court was asked to consider relatively novel questions of duty in the aftermath of Superstorm Sandy. Plaintiffs in the case, still ongoing at the time of writing, alleged that the storm had resulted in the loss and destruction of their properties through a confluence of flooding and energized wiring and that the electric utility had a duty to de-energize lines before a storm. The court held that electric utilities are “under a duty to exercise reasonable care
in the supply of electric service.” Electric utilities must exercise that duty in a way “commensurate with the inherent danger hidden in its high voltage equipment.” The court avoided answering “whether defendants, having been able to de-energize [its power lines ahead of Superstorm Sandy], ‘acted with the degree of care which was commensurate with the risk to which it had exposed’ the Plaintiffs.” The court viewed that as a question of breach to be answered by the jury. Similarly, in considering a climate resilience claim, a court might conclude that the duty is to take reasonable action commensurate to the risk to the plaintiff (of outages, for example) and then allow a jury to determine whether the utility, having failed to undertake feasible climate resilience planning, acted with the appropriate degree of care.

A New Jersey court approached this inquiry in a similar case with different result. In Roudi v. Jersey Central Power & Light, the same conduct and harm was alleged as in Praetorian: the electric utility had failed to de-energize its lines ahead of Superstorm Sandy causing fires that damaged plaintiffs’ homes. Here, however, the court did not see preemptive de-energizing as a matter of breach of the duty of reasonable care; instead it assessed whether it should recognize and impose a wholly new duty to preemptively de-energize. The court concluded there could be no such “far-reaching” duty, emphasizing various policy considerations relied upon by the lower court, including the “crushing burden” the duty would place on the utility. This case illustrates a different approach to defining what the duty of care entails in a climate resilience claim. If a court views climate resilience planning as a duty in and of itself, it might examine how far-reaching that duty would be and the burden it would place on the utility. Notably, should a court adopt this approach, it does not necessarily follow that the outcome of such a case would replicate Roudi. Rather, it suggests that scope of the court’s review would similarly focus inquiry under analysis of duty.

<table>
<thead>
<tr>
<th>Box 10: Potentially Available Claims and Duties</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Part centers analysis of duty and breach upon theories of negligence and duty of care. However, additional claims and duties may be relevant, including:</td>
</tr>
</tbody>
</table>

Product liability claims, where the duty of care is defined as obligation “to avoid selling a defective product or one that is unaccompanied by an adequate warning.”

Private nuisance claims, which prohibit defendants from “interfere[ing] unreasonably or knowingly with the use and enjoyment of another’s property.”

Public nuisance claims, where the duty of care requires a defendant to, “not to contribute unreasonably or knowingly to an interference with the public’s resources.”

Statutory claims, where duty is defined in law. One example might be the electric utilities’ statutory duty to serve, which, unlike the duty of care, is based upon the grant of monopoly franchise and requires an electric utility to extend and maintain adequate service.

316 Id. at *20.
317 Id. at *21. This potentially “heightened” duty that electric utilities are under is a common theme throughout negligence claims against utilities. Case law in many states recognizes a heightened duty of care commensurate with proper operation and maintenance of electric systems. See, e.g., Ala. Power Co. v. Jackson, 166 So. 692, 693 (Ala. 1936); Citerella v. United Illuminating Co., 266 A.2d 382, 386 (Conn. 1969); Miss. Power & Light Co. v. Shepard, 285 So. 2d 725, 729 (Miss. 1973).
319 Id.
321 Id. at *4.
322 Id. at *5, *7.
323 The court’s approach in Praetorian appears to more closely aligns with the Restatement’s primary sense of duty, which asks “whether the defendant was obligated to act with due regard” toward the plaintiff. See Goldberg & Zipursky, supra note 299, at 699-70, 714 (citing RESTATEMENT (SECOND) OF TORTS § 4).
324 Hunter & Salzman, supra note 281, at 1746.
325 Id. at 1749.
326 Id.
327 E.g., CLF ExxonMobil Complaint, supra note 275; CLF Shell Complaint, supra note 275.
328 See generally Rossi, The Common Law “Duty to Serve”, supra note 254 (discussing the contours of the utility’s duty to serve).
4.3 Breach of Duty

Courts most often employ four key approaches to determine whether a duty of care, once established, has been breached: risk-utility analysis, the multi-factor balancing test, industry custom, and public policy considerations. Each is explored in turn, below. We find that breach, in a climate resilience claim, is cognizable through each approach identified.

4.3.1 Risk-Utility Analysis

Risk-utility analysis considers whether “the burden of preventing injury is less than the product of the magnitude of the injury and its likelihood.”\(^{329}\) The Restatement (Second) of Torts describes this analysis as “where an act is one which a reasonable man would recognize as involving a risk of harm to another, the risk is unreasonable and the act is negligent if the risk is of such magnitude as to outweigh what the law regards as the utility of the act or of the particular manner in which it is done.”\(^{330}\)

In a climate resilience claim, the product of the magnitude of injury (i.e., to life and property from climate-induced outages and other harms) and likelihood of harm (variable by location, but nowhere in the U.S. is immune) would be weighed against the burden of preventing injury (i.e., by conducting climate resilience planning and making resilience investments).\(^{331}\) Climate change impacts are significant and foreseeable and costs continue to grow as climate change increasingly results in more frequent, severe, and intense extreme weather events and marked changes in non-event weather patterns (e.g., higher average temperatures).\(^{332}\) A court, in employing risk-utility analysis, thus has significant evidence to draw from to support a finding of breach. Scales will tip only further as the consequences of climate change increase in severity and the magnitude of harm becomes greater.\(^{333}\) Planning may reveal methods to reduce injury through operational changes rather than new, significant, and additional expenditures. Such methods would reduce the burden on the defendant of preventing injury. There is mounting evidence that the cost of implementing resilience measures today will be less than the cost of injury from outages that will occur in the future, for example, in terms of value of lost load due to climate change impacts (see Box 3).\(^{334}\) The risk-utility analysis thus increasingly favors engaging in climate resilience planning and making resilience investments now, and that a failure to do so breaches an electric utility’s duty of care.

4.3.2 Multi-Factor Balancing Test

A second approach the courts employ in assessing breach is the multi-factor balancing test. Here, a court would consider additional elements beyond simply balancing the burden of avoidance against the likely damage, including (1) the foreseeability and degree of certainty of harm, (2) the goal of using tort law as a deterrent for future harm, (3) the burden on the defendant, and (4) the consequences to the community of imposing a duty.\(^{335}\)

The multi-factor balancing test’s additional considerations generally favor a finding that failure to adequately prepare for the impacts of climate change may constitute a breach of a utility’s duty of care. For example:

1. Foreseeability and degree of certainty of harm are both increasingly supported by ever-sharpening climate science and granular, down-scaled data analysis.
2. Imposing liability for failure to prepare for climate change may well deter future harm by spurring proactive resilience planning.
3. The burden to electric utilities of engaging in climate resilience planning is likely to be modest as any costs associated could be structured similarly to how risks are traditionally allocated. Although consideration of climate change is not within the traditional role of an electric utility, risk assessment is a foundational aspect of electric utility planning.

329 Hunter & Salzman, supra note 281, at 1756.
332 Fahey et al., supra note 331, at 76, 81, 94-98.
333 See generally id.
334 See supra Parts 2 and 3.1.3.
335 Hunter & Salzman, supra note 281, at 1768-69 (providing list of factors considered by a federal court in California, Vu v. Singer Co., 538 F. Supp. 26, 29 (N.D. Cal. 1981)). The Third Restatement also touches upon several of these concepts. See RESTATEMENT (THIRD) OF TORTS § 3 (2010).
and thus whatever additional effort climate resilience planning may require may be supported through existing processes.

4. Ratepayers, at the very least, and likely any individual within a given service area, would benefit, insofar as improved climate resilience planning results in reduced harm to person and property through at least the entirety of a utility’s franchise area. Predicted benefits would, however, be evaluated in the context of expected rate impacts.

4.3.3 Industry Custom

Industry custom may aid in establishing breach, with the courts considering the practices of the relevant industry to assess the scope of the duty and comparing that to the defendant’s own conduct.336 However, as made clear in T.J. Hooper v. Northern Barge Corp., industry custom is not controlling, and only girds against breach to the extent that custom itself is reasonable.337 In Hooper, the plaintiffs’ barges, towed by the defendant’s tugboats, were lost at sea during a storm. Plaintiffs alleged that the defendant was negligent in failing to provide the tugboats with radios which would have provided advanced warning of the oncoming storm. The defendant argued that no industry custom nor legal requirement existed to obligate it to ensure radios were installed. The court, in finding for the plaintiff, held that industry custom was not a shield against liability in the case at hand because “there are precautions so imperative that even their universal disregard will not excuse their omission.”338

Nor is industry custom static; it necessarily changes as technology and science improves. There may be situations where “a whole calling may have unduly lagged in the adoption of new and available devices.”339 In such a case, the whole industry would have failed to adopt reasonable measures for preventing risk, and thus a showing of industry custom would provide no defense to a defendant’s breach.

As explored in more detail in Part 2.3 above, electric utilities have until recently not robustly engaged in climate resilience planning. Indeed, this paper is a reflection of the need to advance industry efforts to keep pace with best available science, evidence, and practical experience. There are, however, signs that industry custom is changing. In recent years, a number of electric utilities have engaged in climate resilience planning, and others have acknowledged the need to do so.340 Several state utility commissions have also recognized the relevance of climate change to the sector it regulates.341 Con Ed’s Climate Study has demonstrated that climate resilience planning is feasible and provides vital information about how climate change will impact assets and operations. It is already being held up as industry standard in other rate cases and at least two other electric utilities have already agreed to undertake similar assessments. Electric utilities that fail to follow suit could be considered “laggards” in breach of a growing industry custom.342 Additionally, climate resilience planning has been widely supported and recommended by government and industry bodies, suggesting that it is a practice “so imperative that even [its] universal disregard will not excuse [its] omission.”343

4.3.4 Public Policy Considerations

Breach may additionally be informed by public policy considerations, which are relevant also to identifying duty in certain instances, as illustrated in Strauss and Roudi. Here, just as overriding policy concerns might persuade a court not to impose a duty, it might also prompt a judge to forego a finding of breach “out of concern that the scale of liability will be so large as to run counter to public policy.”344 In particular, courts may find reason to limit breach out of concern that not doing so would create limitless liability for the defendant. That concern would, however, be less persuasive where plaintiffs are limited to electric utility ratepayers.
PART 4: ADVANCING CLIMATE RESILIENCE THROUGH TORT LAW CLAIMS IN STATE COURT

4.4 Causation

Tort law requires that the plaintiff’s harm is linked through some cause and effect relationship to the defendant’s negligent conduct. This causation requirement includes two analytic prongs: (1) cause-in-fact and (2) proximate, or legal, cause.\(^{348}\)

4.4.1 Cause-in-Fact

Cause-in-fact is most often determined through the “but for” test. This test is met only on the finding that “the harm would have not occurred but for the defendant’s negligence.”\(^{349}\) The defendant’s negligent conduct must be a necessary cause of the harm; it must be “at least partially to blame.”\(^{350}\)

A similar degree of specificity would be necessary in informing what constitutes breach in a climate resilience claim. In theory, various electric utility actions (or failures to act) could support a finding of breach, such as:

- failure to build or raise assets at a level outside the zone of flooding likely to occur given the foreseeable increased storm surge due to climate change; and
- failure to account for climate change-amplified temperature rise when purchasing infrastructure built to operate at certain temperatures.

Reasonably foreseeable planning practices that can be implemented when the utility conducts a risk assessment provide accurate projections of what its service territory will look like in a changed climate and the physical impacts that climate change will have on owned infrastructure. The failure to engage in such practices could thus serve as a specific conduct that would inform whether the duty of care was breached.

Climate change claims premised upon a defendant’s production and sale of fossil fuels have relied upon careful collection and reflection of scientific evidence and study.\(^{351}\) This is particularly true with respect to the causation element, which first required establishing the existence of the anthropogenic greenhouse gas effect. Given that “it is fair to say that global warming may be the most carefully and fully studied scientific topic in human history,” this causal connection has been well-established.\(^{352}\) This same basis is also necessary to climate resilience claims, which likewise must premise any causal chain first upon evidence of increasing climate change. Although such causal linkage in a climate resilience claim may require specific and particularized climate impacts to that utility’s service territory, down-scaled climate projections, as described in Part 2, make such information attainable.

From here, however, paths diverge. Tort litigation premised on an entity’s contribution to climate change generally next considers questions of scale and attribution, linking the defendant’s conduct (e.g., the production and sale of fossil fuels) to a specific set of harms.\(^{353}\) These inquiries are relevant to the cause-in-fact analysis. Climate resilience claims, however, focus causality

\(^{347}\) Id. at *20-21 (citations omitted).

\(^{349}\) Id. at 1680. In some instances, cause-in-fact is established using the substantial factor test, although this is generally reserved “for situations where multiple events combine to cause an injury that would have occurred even if one of them were removed.” Id. at 1681.

\(^{350}\) Id. at 1680.

\(^{351}\) Hunter & Salzman, supra note 281, at 1763-64.

\(^{352}\) Kysar, supra note 298, at 30.

\(^{353}\) Id. at 31; see also Michael Burger, Jessica Wentz & Radley Horton, The Law and Science of Climate Change Attribution, 45 COLUM. J. ENV’T L. 57 (2020), https://perma.cc/M8FH-8EKS.
on a different chain: the linkage between a defendant’s failure to reasonably plan for the increasingly severe and frequent consequences of climate change to owned infrastructure and harms that result. Take, as an example, outages after Superstorm Sandy in New York City—Con Ed’s service territory. Assume the outages occurred because a piece of equipment was in the flood zone and was rendered inoperable by storm surge. Before the storm, Con Ed built its assets based on an assumed 12.5-foot storm surge, which was derived from the historical record.\(^\text{354}\) This assumed storm surge was incorrect, as historic data did not account for the impacts of climate change. Had Con Ed engaged in climate resilience planning, it would presumably have identified a different set of assumptions that were more accurate.

This fact pattern could potentially give rise to an extreme weather tort claim. A plaintiff might allege, for example, that the electric utility’s emergency preparations immediately prior to the storm were insufficient. The fact pattern might additionally give rise to a climate resilience claim. Here, a climate resilience claim might focus on the sufficiency of the electric utility’s actions in incorporating foreseeable climate change impacts to its longer-term planning, processes, and risk assessments. It might assert, for example, that but for Con Ed’s decision not to conduct a climate risk assessment and identify reasonably foreseeable consequences of climate change, like higher storm surges, assets would not have been placed in flood prone areas. That is, the utility’s failure to engage in climate resilience planning—is at least partially to blame for the assets being rendered inoperable by flooding and the consequent outages, and thus a “but for” or “necessary” cause of the harm.

4.4.2 Proximate Cause

Proximate cause “addresses . . . the question of whether in logic, fairness, policy, and practicality, the defendant ought to be held legally accountable for the defendant’s harm that in some manner is ‘remote’ from the defendant’s breach.”\(^\text{355}\) Defined as the “reasonably close connection between a defendant’s wrong and the plaintiff’s injury,” proximate cause provides limitation to defendant liability.\(^\text{356}\) The concept of foreseeability is central to determining proximate cause, premised on the theory that “responsibility for consequences should be based on the quality of an actor’s choices that led to the consequences. The moral fiber of such choices is gauged by the consequences the actor should have contemplated as plausible eventualities at the time the choice was made.”\(^\text{357}\) Proximate cause will not be found when the “defendant’s negligence appear[s] simply too attenuated” or “tenuous or ‘remote.’”\(^\text{358}\)

Extreme weather tort cases again are instructive in considering causation. Similar questions of foreseeability emerge, as the remoteness of the causal chain is often central to court inquiry. Extreme weather tort cases are, however, surprisingly sparse and outcomes are uneven. As a general rule, precedent often collapses both prongs of the causality analysis or centers only on proximate cause. Analysis generally turns upon the foreseeability of the plaintiff’s harm in connection to the defendant’s breach of duty. Praetorian serves as one example. In dismissing defendant’s motion for summary judgment, the court held that “the foreseeability of harm to the plaintiffs was clear. There were ample weather reports of the approach of Superstorm Sandy and about the great surges that would occur. The dangers of flood waters coming into contact with live electric power were well known in the utility industry.”\(^\text{359}\)

A similar analysis is embedded in *National Food Stores, Inc. v. Union Electric Co.*\(^\text{360}\) There, plaintiff National Food Stores alleged that electric utility defendant was liable for the loss of foodstuffs, caused by an electricity outage during a summer heat wave. Although the case was premised on a duty to serve and defendant’s failure to provide notice of an impending outage, rather than duty of care, the causation analysis proceeded similarly, with the court oriented again to the foreseeability of the harm. Whether the utility should have been aware of looming outage was central. In ruling in favor of the plaintiff, the court contrasted precedent where an outage was “caused by external forces outside the control of the power company, which were not reasonably foreseeable,” with the case at hand, where the utility “was well aware of the unprecedented demand upon its facil-

354 Van Nostrand, supra note 170, at 101.
355 Owen, supra note 348, at 1681.
356 Id. at 1681-82.
357 Id. at 1671.
358 Id. at 1684.
In the latter situation, the utility’s negligence is a legal cause that is not excused because of the presence of external forces at play.

Applying this precedent to a climate resilience claim, establishing proximate cause will require a showing that it was reasonably foreseeable that particular climate impacts would occur in particular areas and that, unless the electric utility implemented appropriate resilience measures, those impacts would lead to outages. As discussed in Part 2, downscaled climate projections can be used to identify local climate impacts, and their likely consequences for electric utility operations assessed through the climate resilience planning process. Indeed, as the Con Ed Climate Study demonstrates, electric utilities have the ability to uncover climate vulnerabilities within their systems and take appropriate remedial action. To the extent other electric utilities fail to undertake and periodically update similar studies, any outages resulting from climate-induced phenomena are arguably not only caused by climate change—an external event—but also by the utility’s failure to appropriately prepare for it. The electric utility’s negligence in failing to conduct climate resilience planning is a proximate cause for which it can be held liable in tort.

4.5 Harm

As stated at the outset of this Part, a climate resilience claim arises from an electric utility’s failure to adequately prepare for reasonably foreseeable event- and non-event-based climate impacts to owned assets and/or operations where that failure results in cognizable harm. While state utility commissions will often consider climate resilience in the context of future climate impacts, climate resilience claims before a court, like the majority of tort law claims, will generally center upon past events.

Cognizable harm could include a variety of injuries. Borrowing from extreme weather case law, harm to person and property both appear to be cognizable harms. In *Praetorian* and *National Food*, plaintiffs brought suit on the basis of property loss. Other cases have been based on physical harm to individuals, for example, from downed power lines. Harm may thus include injury to persons and/or property damage resulting from electricity service outages, for example where a heat wave forces curtailment of output from a thermoelectric generating plant, triggering an outage that results in a blackout at a frozen foods warehouse, leading to spoilage. Climate resilience claims might also, however, arise in situations where the harm (e.g., personal injury or property damage) is not directly connected to, or the result of, a service outage. Like in *Arkansas Valley Electric*, where litigation resulted from contact and injury with a downed power line, harm resulting from the electric utility’s equipment, operation, or asset directly (i.e., rather than a subsequent forced outage) is a potential additional basis for a climate resilience claim. One example might be where transmission line sag results in a wildfire, which leads to loss of life and property damage.
Parts 3 and 4 above detail two pathways for advancing climate resilience planning by electric utilities—one before state utility commissions and the other in state court. Although these two approaches generally raise different temporal issues—that is, prospective compared to retrospective action—interplay and overlap necessarily exists. This Part considers the interaction between the pathways, with a focus upon how state utility commission and state court proceedings may intersect. Specifically, this Part considers how a climate resilience claim brought against an electric utility implicates the jurisdiction of both state utility commissions and civil courts, and the law governing each body’s role in reviewing such a claim.

This Part proceeds in three subparts. First, it addresses issues of primary jurisdiction and exhaustion to provide an understanding of where climate resilience claims likely will be heard in the first instance. Second, it describes the relevance of state utility commission findings in “collateral” civil litigation where claims related to commission proceedings are raised. Third, it identifies instances where limitation of liability provisions in electric utility tariffs may apply. In each of these areas, there is variability among states, since each has its own body of law and judicial doctrines. Original research was conducted to elucidate these state differences. This Part’s analysis relies upon that work to identify and analyze variability between states.

5.1 Proper Forum: Primary Jurisdiction and Exhaustion

Climate resilience claims involve factual and legal issues that may be relevant to both state utility commission and state court proceedings. Questions of proper forum necessarily emerge, as it is not immediately clear in all instances whether the state court or state utility commission should consider climate resilience claims in the first instance. As a general rule, civil courts most often serve as the forum for tort law claims against electric utilities, particularly where only questions of law exist. Conversely, claims relating to the rates charged and services provided by electric utilities generally fall within the jurisdiction of the state utility commission. Issues raised in climate resilience claims, where there is some alleged failure on the part of the electric utility to fulfill a planning obligation, fall somewhere between these two, creating a thorny question of proper forum. Such a claim might “sound in” tort, as described in Part 4, but might also implicate issues of rates and services, like those discussed in Part 3.

Two doctrines are particularly relevant to the proper forum inquiry: primary jurisdiction and exhaustion of administrative remedies. While distinct doctrines, courts often muddle the two or even use them interchangeably. Primary jurisdiction doctrine is a prudential doctrine that courts may invoke where a claim is originally cognizable by both a trial court and an administrative agency. When the doctrine is invoked, a court may abstain from hearing the claim and refer it to the relevant agency for determination.

Notably, this question may not be present in other contexts. Electric utilities are closely regulated, resulting in extensive agency jurisdiction, and thus important considerations of forum exist. This may not be true for other professions and industries, and thus questions of forum will be less relevant in those contexts. Conversely, claims relating to the rates charged and services provided by electric utilities generally fall within the jurisdiction of the state utility commission. Electric utilities, particularly where only questions of law exist.

C o n v e r s e l y , c l a i m s r e l a t i n g t o t h e r a t e s charged and services provided by electric utilities generally fall within the jurisdiction of the state utility commission.
PART 5: INTERPLAY BETWEEN STATE UTILITY COMMISSIONS AND COURTS

in the first instance.371 Exhaustion doctrine, on the other hand, is a non-discretionary rule requiring a party to initiate its claims before an administrative agency.372 The claim can only be heard by the judiciary through appellate review after the agency has made a determination.373 Exhaustion is generally required where an agency is said to have “exclusive” jurisdiction over the claim.374

Graphic 1: U.S. Map with States Color Coded by Category

Box 12: Fifty State Survey – Description and Methodology

This Part is informed by original research that identified relevant state-level precedent on primary jurisdiction and exhaustion. The research examined cases involving common law claims against electric and other public utilities. Specific emphasis was placed on cases involving tort claims brought against electric utilities. In some instances, we also examined cases involving other common law claims, primarily contract claims, to fill in research gaps where courts discussed forum for common law claims more generally. Likewise, claims against other types of utilities, particularly telecommunications and water utilities, were encompassed in the research.

Cases where a tort claim was brought against a utility and premised upon an extreme weather event were of particular note. Again, we believe these cases to be the best analogue for the climate resilience planning considerations that animate this paper. As such, this Part identifies and summarizes, when available, the analysis and holdings in those cases in particular.

371 Knippa, supra note 369, at 1291-92.
373 Louis L. Jaffe, Primary Jurisdiction, 77 HARV. L. REV. 1037, 1037 (1964) (“Exhaustion emerges as a defense to judicial review of an administrative action not as yet deemed complete.”).
374 See, e.g., Pacific Lightnet, 318 P.3d at 97 (“[T]he court must first determine whether the agency has exclusive original jurisdiction, in which case, the doctrine of exhaustion would apply.”).
Application of these doctrines varies significantly among state jurisdictions. Drawing from a fifty state survey conducted to inform this paper (see Box 12) we categorize states based on whether there is/are: (1) precedent providing direction on forum availability, (2) precedent providing guidance as to process and evaluation of forum availability, or (3) no rules that emerge from precedent.

Importantly, the research demonstrates that categorization is fluid, and there is often space for courts to distinguish a claim to avoid precedent or apply an exception. This is likely to be particularly true with respect to climate resilience planning, which is a generally novel concern for courts and utility commissions. Thus, while this subpart categorizes states, the research should be viewed as illuminating the myriad ways in which questions regarding forum have been resolved in the past and could play out in future climate resilience claims.

5.1.1 Direction on Forum Availability

Twenty-two states have precedent that provides some consistency in whether tort law claims against an electric utility first proceed to a state court or the state utility commission.

(A) Civil Court

In fourteen states, precedent illustrates a pattern of allowing tort claims against an electric utility to be heard in a civil court in the first instance.375 This is evidenced by either explicit statements that such claims fall within the province of the courts as a common law tort,376 or from a pattern of precedent in which courts heard such claims.377

One example is Florida Power & Light v. Velez, wherein a Florida appellate court was asked to address electricity customer allegations of gross negligence by Florida Power and Light ("FPL") in the context of a severe weather event.378 Plaintiffs asserted that FPL had failed to comply with storm-hardening standards imposed by the state utility commission.379 The court concluded the claims could be heard by the trial court, holding that “the mere fact that such claims may involve questions of whether FPL failed to meet certain standards established by the [state utility commission] does not divest the trial court of its jurisdiction, or vest exclusive jurisdiction in the [state utility commission], to resolve such issues.”380 The court relied on an earlier Florida supreme court decision that the court had jurisdiction over a claim against a telephone company for negligently failing to provide efficient telephone service as required by state utility commission standards.381 That decision is widely cited by Florida courts for the proposition that jurisdiction over tort claims properly lies with the judiciary even when the case concerns technical matters related to a utility’s regulatory compliance.382

375 These states include Arkansas, Colorado, Connecticut, Delaware, Florida, Kansas, Massachusetts, Mississippi, Montana, Nebraska, New York, North Carolina, North Dakota and Vermont.

377 (“[T]here is no administrative remedy exists for a party where the dispute is essentially private. Where there is no administrative remedy, the litigant may proceed directly to district court.”); Fernandez v. Atletelboe Housing Auth., 20 N.E.3d 229 (Mass. 2014) (court is not ousted of jurisdiction where case presents at least one matter for judicial determination); State ex rel. Pub. Serv. Comm’n v. Dist. Court of First Judicial Dist. in and for Lewis and Clark County, 84 P.2d 335, 335 (Mont. 1938) (concluding the state utility commission was not enacted for the purpose of arbitrating “controversies between utilities and private persons”); Green Mountain. Power Corp. v. Sprint Comm’n’s, 779 A.2d 687 (Vt. 2001).

380 Id.

381 Id.

(B) State Utility Commission

Courts in eight states have precedent that indicates tort law claims are generally heard by the state utility commission in the first instance. In several of these states, the courts have reached this conclusion on the basis that the cases inevitably involve “services” or “rates” that are subject to state utility commission oversight, making it the primary adjudicator. Others have concluded that adjudication of these claims requires the commission’s expertise in resolving questions of fact. Notably, these courts have reached this conclusion even in light of state case law holding that typical common law claims, like tort and contract claims, can be heard by the trial court initially. Often, tort claims against utilities in these states will be bifurcated, such that all issues within the jurisdiction of the state utility commission will be decided in that forum first and then questions of negligence will be decided by the judiciary, see infra section 5.2.

Illinois is particularly illustrative. The Illinois Commerce Commission has exclusive jurisdiction over claims stemming from services and rates of public utilities under its jurisdiction. The Illinois supreme court most recently considered this authority in Sheffler v. Commonwealth Edison Co. and interpreted it broadly. Plaintiff customers had lost power during a winter storm, and alleged that electric utility Commonwealth Edison had negligently failed to provide adequate, efficient, and reliable electrical service in violation of its statutory duties. The supreme court affirmed the lower court’s holding that such claims went to the service provided for the rates charged and should be heard by the commission, not the court. The high court found the nature of the relief sought “was predicated on allegations that Commonwealth Edison was not providing adequate service,” which “goes directly to [Commonwealth Edison’s] service and infrastructure, which is within the Commission’s original jurisdiction.” It also explained it was “essential” that the agency handle matters related to service and rates that involved technical data and expert opinions. Illinois is therefore an example of a jurisdiction that has concluded that claims against a utility, even those that sound in tort, must be heard first by the state utility commission.

5.1.2 Evaluative Framework for Assessing Forum Availability

Courts in nineteen states and the District of Columbia have adopted evaluative frameworks to determine proper forum for particular tort law claims brought against an electric utility. Courts in these states have identified relevant considerations that judges should weigh in assessing primary jurisdiction. While not all states use each, five common considerations are: (1) the relative expertise of each potential adjudicator; (2) the desire for regulatory uniformity; (3) the potential for adjudication to interfere with the agency’s role; (4) whether the claim is of public concern; and (5) the possible futurity of agency adjudication. These considerations are not specific to cases involving electric utilities. However, given the expansive jurisdiction of state utility commissions over electric utilities, the

383 These states include Alabama, Alaska, Illinois, Louisiana, Maryland, New Jersey, New Hampshire, and Texas.
387 See, e.g., Minutella v. Jersey Cent. Power & Light, No. OCN-L-2955-14 (N.J. Sup. Ct. Mar. 30, 2015). Defendants argued the negligence claim raised issues regarding the “safe, adequate and proper provision” of service, which were issues “within the exclusive authority and expertise of the BPU.” Id. at 17-18. The court agreed.
388 While the question of negligence was within the “conventional experience and jurisdiction of the courts,” the “issues of safe delivery” of electricity service fell within the jurisdiction of the BPU, which should be allowed to decide “factual issues as to whether it was appropriate or necessary to suspend the delivery of electrical service” in the first instance. Id. at 32-33.
391 Sheffler, 923 N.E.2d at 1273-77; Sheffler, 955 N.E.2d at 1122. The lower court found that the plaintiffs claim was for “reparations,” as opposed to civil damages, because “the essence of the claim is that a utility has charged too much for a service.” Sheffler, 923 N.E.2d at 1275. The complaint pertained to rates because it “concerns claims that ComEd provided inadequate or unreliable electric services.” Id.
392 Sheffler, 955 N.E.2d at 1125.
393 Id. at 1222.
394 These states include Arizona, California, Georgia, Hawaii, Indiana, Maine, Michigan, Minnesota, Nevada, New Mexico, Ohio, Oklahoma, Oregon, Pennsylvania, Virginia, Washington, West Virginia, Wisconsin, and Wyoming. Notably, Oklahoma, Virginia and Wyoming do not use a multifactor test, but instead the answer seems to hinge primarily on whether the case involves public or private rights. See infra note 415.
395 As discussed above, CLF’s statutory failure to adapt lawsuits against ExxonMobil has been stayed under federal primary jurisdiction doctrine. See supra note 311. The district court there considered some similar factors in assessing whether to stay its proceedings to allow EPA an opportunity to review the permit at issue first. Conservation L. Found. v. ExxonMobil Corp., 448 F. Supp. 3d 7 (D. Mass. 2020). The court relied on the Blackstone factors: “(a) the agency determination [lies] at the heart of the task assigned the agency by Congress; (b) agency expertise [is] required to unravel intricate, technical facts; (c) the agency determination would materially aid the court; and (d) deference to the agency would ‘serve the interest of national uniformity in regulation.’” Id. (quoting Massachusetts v. Blackstone Valley Elec. Co., 67 F.3d 981, 992 (1st Cir. 1995)).
considerations are particularly useful in applying primary jurisdiction doctrine in such cases.

First, courts often consider the relative expertise of each potential adjudicator. Where tort law issues “predominate”395 or only issues of statutory interpretation or legal construction are raised,396 claims are viewed as falling within the “conventional jurisdiction”397 of the judiciary. Courts may presume they have at least as much expertise in handling these claims, if not more.398 However, state utility commissions may be better qualified to examine technical questions that arise in claims against electric utilities and to make conclusions about compliance with the statutory and regulatory scheme.399 State utility commission are viewed as having “special competence”400 and expertise in these areas.401

Second, courts also consider regulatory uniformity. Where court adjudication could create inconsistency through ad hoc judicial decisions applying regulations and resolving similar issues, courts may decide that claims are best heard in the first instance by the state utility commission. Likewise, a court might consider whether judicial adjudication could lead to conflicting decisions not just between judges, but also between the courts and the state utility commission.

Third, and relatedly, courts also consider whether adjudication would interfere with the legislative purpose in creating regulatory agencies. Courts are often reticent to interfere in areas that have been delegated to agencies and seek to respect the role that the legislatures intended for agencies to fill.402 The courts, therefore, will often refer claims where there are relevant regulatory standards in place,403 where interpretation of technical terms or tariff provisions is needed,404 or where a claim involves a “general supervisory or regulatory policy.”405

Fourth, courts consider whether the claim is a matter of public concern or of a private nature. Where tort claims against electric utilities implicate “broad public doctrines”406 or “widespread acts,”407 and involve disputes affecting the public408 that are not unique to one party,409 such claims are best heard by the agency. However, where claims are purely private disputes410 or relate to personal injury or property damage not covered by tariffs,411 the court might choose to retain the case because regulatory schemes are not designed to address such individual harm. Courts also refer to this consideration as a division between “individual rights and public rights.”412 Some courts most heavily rely on this consideration to the exclusion of others, although the dividing line between public and private rights claims remains hazy.413

397 E.g., Campbell, 586 P.2d at 991; State ex rel. Bell Atlantic-West Virginia v. Ranson, 497 S.E.2d 755, 764 (W. Va. 1997). Some states refer to these types of case as “inherently judicial.” E.g., City of Seattle v. People’s Coop. Power Ass’n, 483 N.W.2d 477, 480 (Minn. 1992).
400 E.g., District of Columbia, 963 A.2d at 1153; Austin Lakes, 648 N.E.2d at 647.
402 E.g., Elklin, 420 A.2d at 376; City of Taylor v. Detroit Edison Co., 715 N.W.2d 28, 35 (Mich. 2006); Bell Atlantic-West Virginia, 497 S.E.2d 755.
409 D.J. Hopkins, Inc. v. GTE Northwest, Inc., 947 P.2d 1220, 1225 (Wash. Ct. App. 1997) ("Courts often refer to agency jurisdiction when the allegations involve widespread acts” rather than “an isolated action or transaction.”)
410 Sw. Pub. Serv. Co. v. Artesia Alfalfa Growers’ Ass’n, 353 P.2d 62, 68-69 (N.M. 1960); accord OS Farms, Inc. v. New Mexico Am. Water Co., 218 P.3d 1269 (N.M. Ct. App. 2009) ("[W]hen there is a clear demarcation between acts concerning rights of private litigants and acts affecting the public interest the courts have jurisdiction over the former and the PUC over the latter”) (quiet title suit against utility and commission).
411 E.g., D.J. Hopkins, 947 P.2d at 1225 (citing Moore v. Pac. NW. Bell, 662 P.2d 398, 402 (Wash. Ct. App. 1983), approving of a “distinction between tortious injury to one and unreasonable practices suffered by all”)
412 E.g., Campbell, 586 P.2d at 991; Artesia Alfalfa Growers’, 353 P.2d at 68-69; D.J. Hopkins, 947 P.2d at 1225.
414 Artesia Alfalfa Growers’, 353 P.2d at 68 (noting prior case finding the right to not be discriminated against is an individual right, while the public has a right to be protected against exorbitant rates and explaining that the former is a “legal right” while the latter is a “political right”).
415 For example, Oklahoma courts have emphasized that the state utility commission has jurisdiction over public rights claims, described as those that “arise between the government and others.” Tennesco Oil Co. v. El Paso Nat. Gas Co., 687 P.2d 1049 (Okla. 1984), and Wyoming courts have concluded the state utility commission’s jurisdiction extends to matters “affected with a public interest,” which are services geared “to or for the public.” In re Investigation, 745 P.2d 563 (Wyo. 1987).
Fifth, courts consider the futility or inadequacy of agency processes due to a lack of remedy. Often, this becomes particularly important where a state utility commission is unable to award monetary damages that the plaintiff seeks.416 Courts will also emphasize adjudicatory efficiency and acknowledge the burden that an exhaustion requirement would place on a plaintiff in assessing whether futility favors court adjudication.417

5.1.3 No Rules Emerge from Precedent

In the remaining nine states, precedent is limited and uneven on forum availability and evaluative framework.418 In some states, there is insufficient case law addressing proper forum or involving tort claims against utilities. In other states, courts have not clearly distinguished a tort law claim from an adequacy of service claim. In Missouri, there is conflicting case law on the issue—early decisions provided guidance, but those cases appear to have been contradicted in later decisions without explanation.419

5.2 State Utility Commission Findings in “Collateral” Case

Where the state utility commission makes findings and conclusions in the first instance, plaintiffs might choose to bring (or reinitiate) “collateral” civil litigation against an electric utility before the state trial court. This may occur where the state utility commission was unable to provide the requested remedy or where the state court bifurcated the proceeding between regulatory compliance and/or highly technical issues on the one hand and tort law questions on the other. A few state courts have provided direction on the effect of state utility commission proceedings on subsequent civil litigation against electric utilities. In most cases, the courts have held that statutory and regulatory compliance findings of the state utility commission will not be binding on questions of law, but the court will take the commission’s factual findings and apply them in making legal conclusions.420 Some courts have been clear that compliance findings are subject to collateral estoppel,421 while others have allowed for some review.422

This subpart is intended to demonstrate how related state utility commission and state court proceedings may interact. As discussed above, there are instances where some aspects of a case should be decided by the expert agency, while other matters must be determined by the competent legal court. We highlight cases from four states—Florida, Texas, Pennsylvania, and Massachusetts—that illustrate different ways courts have considered the effect of state utility commission determinations and findings on collateral civil litigation.

5.2.1 Florida

In Florida, the state utility commission’s findings, like those regarding statutory or regulatory compliance, are not binding on questions of tort liability in collateral civil litigation. For example, in Southern Bell Telephone & Telephone Co. v. Mobile America Corp., the plaintiff alleged its telephone utility failed to comply with its statutory duty to provide efficient phone service and sought monetary damages.423 The Florida supreme court concluded that where a trial court seeks the expertise of the state utility commission regarding statutory compliance, its findings “are not conclusive but should be considered together with any other evidence before the court on the issue of liability, and on the issue of damages if applicable to that issue.”424 Decisions should be made by considering the “total evidence”; state utility commission findings are “much like that of the report of a referee or special master which the court, or jury, could act upon as all of the evidence might indicate.”425

416 E.g., Moore, 662 P.2d 398; Stewart v. N. States Power Co., 793 N.W.2d 272 (Minn. 2011).
418 These states include Idaho, Iowa, Kentucky, Missouri, Rhode Island, South Carolina, South Dakota, Tennessee, and Utah.
419 While a more recent case established a three-factor test for primary jurisdiction, see Killian v. J & J Installers, Inc., 802 S.W.2d 158 (Mo. 1991) (en banc), a much older case continues to be cited as the seminal primary jurisdiction decision and that three-factor test has been ignored. State ex rel. and to Use of Kan. City Power & Light Co. v. Buzard, 168 S.W.2d 1044 (Mo. 1944) (en banc), cited by, e.g., Inter-City Beverage Co., Inc. v. Kan. City Power & Light Co., 889 S.W.2d 875 (Mo. Ct. App. 1994). What’s more, a variety of tort suits against utilities have simply proceeded in court without discussion of either case. E.g., Gladden v. Mo. Pub. Serv. Co., 277 S.W.2d 510 (Mo. 1955) (negligence case proceeding without discussion); Sparks v. Platte-Clay Elec. Coop., 861 S.W.2d 604 (Mo. Ct. App. 1993) (electrical fire negligence proceeds without discussion). And, some cases have simply said that the PSC cannot abrogate tort law claims for negligence. E.g., Pub. Serv. Comm’n v. Mo. Gas Energy, 388 S.W.3d 221 (Mo. Ct. App. 2012).
420 E.g., S. Bell Tel. & Tel. Co. v. Mobile Am. Corp., 291 So. 2d 199 (Fla. 1974).
421 E.g., Elkin, 420 A.2d at 176-77. The doctrine of collateral estoppel applies to “preclude[] relitigation of issues actually litigated and necessary to the outcome of the first action” in a second action where a judgment has been rendered in a prior case. Parkland Hosiery Co. v. Shore, 439 U.S. 322, 326 n.5 (1979). Offensive collateral estoppel “occurs when the plaintiff seeks to foreclose the defendant from litigating an issue the defendant has previously litigated unsuccessfully.” Id. at 326 n.4. Defensive collateral estoppel “occurs when a defendant seeks to prevent a plaintiff from asserting a claim that the plaintiff has previously litigated.” Id.
423 291 So. 2d at 200.
424 Id. at 201-02.
425 Id. at 202.
PART 5: INTERPLAY BETWEEN STATE UTILITY COMMISSIONS AND COURTS

5.2.2 Texas

The Texas supreme court recently held that factual findings made by the state utility commission should be reviewed under the “substantial evidence” standard—that is, “such relevant evidence as a reasonable mind might accept as adequate to support a conclusion.”426 In Oncor Electric Delivery Co. v. Chapparall Energy, the plaintiff brought a breach of contract claim against the electric utility for failing to adhere to the service agreement.427 The electric utility contended that the state utility commission had jurisdiction and should hear the claim first; the court agreed.428 The Texas supreme court explained that there was a two-step hybrid process for resolution of common law claims against utilities for monetary damages.429 First, because a relevant statutory scheme required an agency with exclusive jurisdiction to make certain findings before a trial court could adjudicate a claim, the agency needed to first resolve all issues that fell within its exclusive jurisdiction.430 Second, those findings could then be used in a later filed suit before a trial court to obtain any relief that the agency was unable to provide.431 Commission findings relied upon in the later filed suit would be “subject to substantial evidence review.”432

5.2.3 Pennsylvania

The Pennsylvania supreme court, in Elkin v. Bell Telephone Co. of Pennsylvania, stated that state utility commission determinations regarding statutory and regulatory compliance are “binding upon the court and the parties” and are “not subject to collateral attack in the pending court proceeding.”433 There, among other claims, the plaintiff alleged that the telephone company had negligently failed to provide reasonable service.434 The company contended the state utility commission had jurisdiction over the issues, and the trial court agreed and stayed the case until the commission made determinations on standards of service.435 In affirming the lower court’s decision, the Pennsylvania supreme court explained that where a matter is referred by the trial court to the state utility commission, it cannot allow the commission’s determinations to be challenged in the collateral trial court case—they are subject to appellate review, but not collateral attack.436 The collateral case, “will not, of course, be used to relitigate the question of adequacy of service, but only to litigate such questions as were not resolved through administrative channels.”437 The civil litigation will be “guided in scope and direction by the nature and outcome of the agency determination.”438

5.2.4 Massachusetts

The Massachusetts supreme court has opined on whether a trial court may apply offensive collateral estoppel to state utility commission factual findings. In Bellermann v. Fitchburg Gas & Electric Light Co., the state utility commission sua sponte opened an investigation into a utility’s preparation and response to a major winter storm to determine whether it had satisfied its public service obligation to provide safe and reliable service.439 After an investigation and adjudicatory proceedings, the state utility commission concluded that the electric utility had violated its obligations.440 Electric utility customers subsequently filed a class action lawsuit alleging gross negligence and statutory violations and requested the court grant the commission’s findings issue preclusive effect.441 Unlike the Pennsylvania supreme court in Elkin, which made a blanket statement on the application of collateral estoppel to state utility commission factual findings, the Massachusetts supreme court in Bellermann explained that the trial court has broad discretion in

427 546 S.W.3d at 137.
428 Id. at 138-41.
429 Id. at 142.
430 Id.
431 Id.
432 Id.
434 Id. at 373.
435 Id. Pennsylvania, like Texas, employs a bifurcated jurisdictional procedure in which trial courts may, under the doctrine of primary jurisdiction, refer aspects of a claim to the commission where adjudication of the matter involves statutory or regulatory compliance or standards of service that fall within the state utility commission’s jurisdiction and technical expertise. Id. at 374-75.
436 Id. at 376-77.
438 Elkin, 420 A.2d at 377.
440 Id. at 1057-58.
441 Id. at 1064. While the plaintiffs sought to apply issue preclusion, the court uses the term collateral estoppel instead, explaining they are the same concept. Id. at 1065.
5.3 Limitations on Liability

State utility commission-approved tariffs often limit the liability of electric utilities in a variety of ways.\footnote{Id. at 1065, 1066, 1068, 1069.} These limitations include provisions that prevent utilities from being held liable for damage to cattle from stray voltage; limiting liability for personal injury or property damage related to power lines; and requiring that the courts interpret and apply tariff language. In some states, statutes or regulations may prevent utility liability altogether. \footnote{Id. at 1065.}

In a majority of states, courts have retained flexibility through their ability to interpret and apply tariff language. Some states, courts have narrowly construed tariff provisions to limit their application.\footnote{Id. at 1069.}

While there are some differences between states, only a few courts have refused completely to enforce tariff limitations on liability.\footnote{Id. in relevant part} A few have extended this rule to allow utilities to limit their liability for ordinary negligence.\footnote{Id.}

There are also states that have allowed electric utilities to limit liability for gross negligence causing economic harm.\footnote{454}

Determining whether offensive collateral estoppel should apply.\footnote{442} The court emphasized that the central inquiry is whether the defendant had a full and fair opportunity to litigate in the first action.\footnote{443} This is often relied upon by other jurisdictions as a decision concluding tariff limitations should not be enforced.\footnote{453}

Some courts have held that tariff provisions may limit an electric utility’s liability for ordinary negligence that causes economic harm, but may not limit liability for gross negligence or willful or wanton misconduct causing economic harm.\footnote{455} A few have extended this rule to allow utilities to limit their liability for ordinary negligence that causes personal injury or property damage.\footnote{456}

There are also states that have allowed electric utilities to limit liability for gross negligence causing economic harm.\footnote{457}
Beyond broad limitations on ordinary negligence, electric utilities’ tariffs often limit claims in more specific ways. For example, rather than excluding liability for negligence entirely, some will place specific caps on the amount of damages that may be recovered. Others will limit the types of damages that may be sought (i.e., direct vs. consequential). Sometimes these provisions will distinguish between types of customers (i.e., residential versus non-residential). These caveats have been considered by some courts in assessing the reasonableness of tariff provisions because the caveats demonstrate that the electric utility is not seeking to immunize itself from liability entirely, but instead only in certain reasonable and narrowly prescribed circumstances. Notably, some courts have also held that tariff provisions are

Box 13: Tariff Language

The following tariff provisions are illustrative of the examples above. It is notable, however, that these types of provisions exist in utility tariffs in every state. As the provisions are often given the force and effect of law once they are approved by the state utility commission, judges will be bound by their limitations in adjudicating tort claims against utilities, although there is some room for interpretation.

Cap on Damages: PECO Energy Company (Pennsylvania)

12.1 Limitation on Liability for Service Interruptions and Variations: In all other circumstances, the liability of the Company to customers or other persons for damages, direct or consequential, including damage to computers and other electronic equipment and appliances, loss of business, or loss of production caused by any interruption, reversal, spike, surge or variation in supply or voltage, transient voltage, or any other failure in the supply of electricity shall in no event, unless caused by the willful and/or wanton misconduct of the Company, exceed an amount in liquidated damages equivalent to the greater of $1000 or two times the charge to the customer for the service affected during the period in which such interruption, reversal, spike, surge or variation in supply or voltage, transient voltage, or any other failure in the supply of electricity occurs.

Limitation on Type of Damages: Northern States Power Co. (Minnesota)

1.4 Continuity of Service: The Company will endeavor to provide continuous service but does not guarantee an uninterrupted or undisturbed supply of electric service. The Company shall not be responsible for any loss or damage resulting from the interruption or disturbance of service for any cause other than gross negligence of the Company. The Company shall not be liable for any loss of profits or other consequential damages resulting from the use of service or any interruption or disturbance of service.

Distinguishing Between Customers: NSTAR Electric Co. (Massachusetts)

3. Limitation of Liability: In any event, for non-residential Customers served under general service rates, the Company shall not be liable in contract, in tort (including negligence and M.G.L.c.93A), strict liability or otherwise for any special, indirect, or consequential damages whatsoever including, but not limited to, loss of profits or revenue, loss of use of equipment, cost of capital, cost of temporary equipment, overtime, business interruption, spoilage of goods, claims of Customers of the Customer or other economic harm.

455 E.g., O’Neill, 2020 WL 1889124, at *7 (noting previous cases had approved tariffs where liability was reasonably capped); Woodburn v. Nw. Bell Tel. Co., 275 N.W.2d 403, 404-05 (Iowa 1979) (approving tariff capping amount recoverable); State Farm Fire & Cas. Co. v. PECO, 54 A.3d 921, 929-30 (Pa. Super. Ct. 2012) (“The second paragraph establishes two scenarios which serve solely to limit the amount of recovery.”); Providence Forge Oil Co. v. Chesapeake & Potomac Tel., 1966 WL 88488, at *3 (Va. Cir. Ct. 1966) (upholding limitation in tariff for errors in directory to a certain amount).

458 E.g., Maryland Casualty, 30 N.E.3d at 115-16 (limiting liability where claim brought by nonresidential customer).

459 E.g., id.; State Farm Fire, 54 A.3d 921, 929.

enforceable against both customers and non-customers, while others have limited application solely to customers. While tariffs are generally binding and enforced by state courts, judges retain broad authority to interpret tariff provisions. The filed rate doctrine does not prevent courts from interpreting their scope and applicability. Some courts, viewing tariffs as having the force and effect of law, will apply the rules of statutory construction in interpreting ambiguous limitation provisions, while others use the rules of contract interpretation instead. Many courts have adopted the rule that exculpatory clauses in tariffs should be strictly construed against the electric utility and in favor of the customer. Ambiguous provisions in particular leave room for court interpretation, and a common interpretation rule is that limitations of liability for negligence must clearly express that purpose.

Examples of narrow interpretations abound. A Washington court interpreted a provision that barred liability for damages due to causes beyond the utility’s reasonable control to only protect the electric utility where the outside cause (in this case, a windstorm) was the sole cause, but not where there was concurrent negligence on the utility’s part. New York courts have narrowly construed provisions limiting liability for interruption of service, finding that they do not limit liability for harms that result from the negligent supply of service. The Wisconsin supreme court concluded that stray voltage does not fall under the regular supply of electricity and therefore liability for harm from stay voltage is not limited by continuity of service limitation provisions. Relatedly, a Minnesota court narrowly interpreted a limitation on liability for consequential damages “resulting from the use of service,” concluding that a customer’s mere use of service could not be viewed as resulting in the presence of stray voltage on his farm, which caused his damages. There is even a difference among courts about how to interpret a tariff provision that says the electric utility is not liable except in cases of “willful default or neglect.” Some have interpreted this as “willful default or willful neglect” meaning that it limits liability for negligence; others have interpreted it as precluding liability except for negligence or willful default, which limits liability in fewer instances.

464 E.g., Pacific Lightnet, Inc. v. Time Warner Telecomms., Inc., 318 P.3d 97, 110 (Haw. 2013) (“It is well-established that ‘the filed-rate doctrine . . . does not preclude courts from interpreting the provisions of a tariff. . . .’” (quoting Brown v. MCI WorldCom Network Servs. Inc., 277 F.3d 1166, 1171-72 (9th Cir. 2002))).
466 Estate of Pearson ex rel. Latta v. Interstate Power & Light, 700 N.W.2d 333, 343 (Iowa 2005).
468 See Tesoro Refining & Mktg. Co. v. Pacific Gas & Elec. Co., 146 F. Supp. 3d 1170, 1182-87 (N.D. Cal. 2015) (noting that while exculpatory tariff provisions are clearly enforceable, because PG&E’s provision was ambiguous, the court could conclude that it did not bar liability in the specific case).
469 Id.
470 Nat’l Union Ins. of Pittsburgh v. Puget Sound Power & Light, 972 P.2d 481 (Wash. Ct. App. 1999) (holding that utility’s continuity of service provision did not “absolve it from liability for service interruptions that it could have controlled or mitigated but for its unreasonable or unexplained failure to utilize available backup equipment in order to reestablish service with a minimum of delay while storm damage to regular equipment is being repaired.”).
472 Schmidt v. N. States Power Co., 742 N.W.2d 294, 315 (Wis. 2007).
PART 6: Conclusion

Climate resilience planning becomes increasingly salient as the consequences of climate change become ever-more pronounced and pervasive. Electric utilities are not immune to climate change impacts; on the contrary, as operators of immense place-based infrastructure, they are particularly vulnerable. Already completed industry efforts make clear that climate resilience planning, capable of elucidating highly specific analysis and recommendation, is possible. The emergence of such knowable information necessarily implicates long-standing obligations already imposed on electric utilities. This paper explores two legal doctrines, public utility law and tort law structures, which we argue require electric utilities to engage in climate resilience planning.

The public utility law and tort law structures examined in this paper impose various obligations on electric utilities. Public utility law obligates electric utilities to meet, among other things, prudent investment, safe and adequate service, and reliability standards. Tort law obligates electric utilities to, among other things, avoid foreseeable harm when performing acts that could injure others. Both public utility law and tort law obligations can only be met if electric utilities institute effective planning processes. That is, law requires electric utilities to expend reasonable effort to uncover and incorporate relevant information into planning processes.

Science and evidence make clear that the consequences of climate change to electric utility assets is relevant—even critical—information to planning processes. And climate change impacts on electric utility infrastructure can be uncovered and incorporated as relevant information into planning processes with reasonable effort. It is, therefore, reasonable to conclude that electric utilities are obligated to expend reasonable efforts to uncover and incorporate consequences of climate change into planning processes.